These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37983151)

  • 1. Upper Limb Cortical-Muscular Coupling Analysis Based on Time-Delayed Back Maximum Information Coefficient Model.
    She Q; Jin G; Zhu R; Houston M; Xu O; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4635-4643. PubMed ID: 37983151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex Recurrence Network Analysis of Inter-Muscular Coordination During Sustained Grip and Pinch Contractions at Different Force Levels.
    Zhang N; Li K; Li G; Nataraj R; Wei N
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2055-2066. PubMed ID: 34606459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying bidirectional total and non-linear information flow in functional corticomuscular coupling during a dorsiflexion task: a pilot study.
    Liang T; Zhang Q; Liu X; Dong B; Liu X; Wang H
    J Neuroeng Rehabil; 2021 May; 18(1):74. PubMed ID: 33947410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intermuscular coupling based on wavelet packet-cross frequency coherence].
    Du Y; Bai X; Yang W; Zheng L; Xie P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):288-295. PubMed ID: 32329281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging and Strength Training Influence Knee Extensor Intermuscular Coherence During Low- and High-Force Isometric Contractions.
    Walker S; Avela J; Wikgren J; Meeusen R; Piitulainen H; Baker SN; Parviainen TM
    Front Physiol; 2018; 9():1933. PubMed ID: 30728782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Multiple-scale intermuscular coupling network analysis].
    Wu Y; She Q; Gao Y; Tan T; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):742-752. PubMed ID: 34459175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying support vector regression analysis on grip force level-related corticomuscular coherence.
    Rong Y; Han X; Hao D; Cao L; Wang Q; Li M; Duan L; Zeng Y
    J Comput Neurosci; 2014 Oct; 37(2):281-91. PubMed ID: 24756619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hand configuration on muscle force coordination, co-contraction and concomitant intermuscular coupling during maximal isometric flexion of the fingers.
    Charissou C; Amarantini D; Baurès R; Berton E; Vigouroux L
    Eur J Appl Physiol; 2017 Nov; 117(11):2309-2320. PubMed ID: 28932987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Spectral Entropy and Application to Functional Corticomuscular Coupling.
    Chen X; Zhang Y; Cheng S; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1092-1102. PubMed ID: 30908233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Information Flow Analysis Reveals Muscle Fatigue-Related Changes in Muscle Networks and Corticomuscular Coupling.
    Liang T; Zhang Q; Hong L; Liu X; Dong B; Wang H; Liu X
    Front Neurosci; 2021; 15():750936. PubMed ID: 34566576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermuscular coherence analysis in older adults reveals that gait-related arm swing drives lower limb muscles via subcortical and cortical pathways.
    Weersink JB; de Jong BM; Halliday DM; Maurits NM
    J Physiol; 2021 Apr; 599(8):2283-2298. PubMed ID: 33687081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force time-history affects fatigue accumulation during repetitive handgrip tasks.
    Sonne MW; Hodder JN; Wells R; Potvin JR
    J Electromyogr Kinesiol; 2015 Feb; 25(1):130-5. PubMed ID: 25465984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nerve supply on hand electromyography coherence during a three-digit task.
    Pasluosta CF; Domalain MM; Fang Y; Yue GH; Li ZM
    J Electromyogr Kinesiol; 2013 Jun; 23(3):594-9. PubMed ID: 23410655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of multichannel intermuscular coupling characteristics during rehabilitation after stroke].
    Du Y; Yang W; Yao W; Qi W; Chen X; Xie B; Xie P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Oct; 36(5):720-727. PubMed ID: 31631619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correlation between upper body grip strength and resting-state EEG network.
    Zhang X; Lu B; Chen C; Yang L; Chen W; Yao D; Hou J; Qiu J; Li F; Xu P
    Med Biol Eng Comput; 2023 Aug; 61(8):2139-2148. PubMed ID: 37338738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermuscular coupling network analysis of upper limbs based on R-vine copula transfer entropy.
    Zhu S; Zhao J; Wu Y; She Q
    Math Biosci Eng; 2022 Jun; 19(9):9437-9456. PubMed ID: 35942767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Descending Corticomuscular Coupling During Hand Grip With Static Force Compared With Enhancing Force.
    Gao L; Wu H; Cheng W; Lan B; Ren H; Zhang L; Wang L
    Clin EEG Neurosci; 2021 Nov; 52(6):436-443. PubMed ID: 32611201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superimposed electrical stimulation decreases maximal grip force.
    Boisgontier M; Vuillerme N; Iversen MD
    J Sports Med Phys Fitness; 2010 Jun; 50(2):152-8. PubMed ID: 20585292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the modulation of brain activity associated with handgrip force and fatigue.
    Cao L; Hao D; Rong Y; Zhou Y; Li M; Tian Y
    Technol Health Care; 2015; 23 Suppl 2():S427-33. PubMed ID: 26410509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-session and inter-day reliability of forearm surface EMG during varying hand grip forces.
    Hashemi Oskouei A; Paulin MG; Carman AB
    J Electromyogr Kinesiol; 2013 Feb; 23(1):216-22. PubMed ID: 22999075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.