These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37983213)

  • 41. LungAttn: advanced lung sound classification using attention mechanism with dual TQWT and triple STFT spectrogram.
    Li J; Yuan J; Wang H; Liu S; Guo Q; Ma Y; Li Y; Zhao L; Wang G
    Physiol Meas; 2021 Oct; 42(10):. PubMed ID: 34534977
    [No Abstract]   [Full Text] [Related]  

  • 42. Recurrent vs Non-Recurrent Convolutional Neural Networks for Heart Sound Classification.
    Gharehbaghi A; Partovi E; Babic A
    Stud Health Technol Inform; 2023 Jun; 305():436-439. PubMed ID: 37387059
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lung sound analysis for wheeze episode detection.
    Jain A; Vepa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2582-5. PubMed ID: 19163231
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship between computerized wheeze detection and lung function parameters in young infants.
    Fischer HS; Puder LC; Wilitzki S; Usemann J; Bührer C; Godfrey S; Schmalisch G
    Pediatr Pulmonol; 2016 Apr; 51(4):402-10. PubMed ID: 26360639
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computer-based lung sound simulation.
    Kompis M; Russi EW
    Med Biol Eng Comput; 1997 May; 35(3):231-8. PubMed ID: 9246857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A heart sound classification method based on joint decision of extreme gradient boosting and deep neural network].
    Wang Z; Jin Y; Zhao L; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):10-20. PubMed ID: 33899423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice.
    Lella KK; Pja A
    AIMS Public Health; 2021; 8(2):240-264. PubMed ID: 34017889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals.
    Choi YA; Park SJ; Jun JA; Pyo CS; Cho KH; Lee HS; Yu JH
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative study of the spectrogram, scalogram, melspectrogram and gammatonegram time-frequency representations for the classification of lung sounds using the ICBHI database based on CNNs.
    Neili Z; Sundaraj K
    Biomed Tech (Berl); 2022 Oct; 67(5):367-390. PubMed ID: 35926850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvise approach for respiratory pathologies classification with multilayer convolutional neural networks.
    Borwankar S; Verma JP; Jain R; Nayyar A
    Multimed Tools Appl; 2022; 81(27):39185-39205. PubMed ID: 35505670
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound.
    Roy TS; Roy JK; Mandal N
    Med Biol Eng Comput; 2023 Sep; 61(9):2417-2439. PubMed ID: 37103637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-power wearable respiratory sound sensing.
    Oletic D; Arsenali B; Bilas V
    Sensors (Basel); 2014 Apr; 14(4):6535-66. PubMed ID: 24721769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of Multiple Respiration Patterns Based on 1D SNN from Continuous Human Breathing Signals and the Range Classification Method for Each Respiration Pattern.
    Hong JW; Kim SH; Han GT
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach.
    Bao X; Xu Y; Kamavuako EN
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inception-Based Network and Multi-Spectrogram Ensemble Applied To Predict Respiratory Anomalies and Lung Diseases.
    Pham L; Phan H; Schindler A; King R; Mertins A; McLoughlin I
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():253-256. PubMed ID: 34891284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wheeze sound analysis using computer-based techniques: a systematic review.
    Ghulam Nabi F; Sundaraj K; Chee Kiang L; Palaniappan R; Sundaraj S
    Biomed Tech (Berl); 2019 Feb; 64(1):1-28. PubMed ID: 29087951
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Classification of pulmonary sounds through deep learning for the diagnosis of interstitial lung diseases secondary to connective tissue diseases.
    Dianat B; La Torraca P; Manfredi A; Cassone G; Vacchi C; Sebastiani M; Pancaldi F
    Comput Biol Med; 2023 Jun; 160():106928. PubMed ID: 37156223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.