BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37983381)

  • 21. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction.
    Fan FJ; Shi Y
    Bioorg Med Chem; 2022 Oct; 72():117003. PubMed ID: 36103795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Geometric Interaction Graph Neural Network for Predicting Protein-Ligand Binding Affinities from 3D Structures (GIGN).
    Yang Z; Zhong W; Lv Q; Dong T; Yu-Chian Chen C
    J Phys Chem Lett; 2023 Mar; 14(8):2020-2033. PubMed ID: 36794930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction.
    Wang X; Liu D; Zhu J; Rodriguez-Paton A; Song T
    Biomolecules; 2021 Apr; 11(5):. PubMed ID: 33925310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Impact of Data on Structure-Based Binding Affinity Predictions Using Deep Neural Networks.
    Libouban PY; Aci-Sèche S; Gómez-Tamayo JC; Tresadern G; Bonnet P
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GraphPLBR: Protein-Ligand Binding Residue Prediction With Deep Graph Convolution Network.
    Wang W; Sun B; Yu M; Wu S; Liu D; Zhang H; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2223-2232. PubMed ID: 37022086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction.
    Li G; Yuan Y; Zhang R
    Comput Biol Chem; 2023 Dec; 107():107972. PubMed ID: 37883905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the Frustration to Predict Binding Affinities from Protein-Ligand Structures with Deep Neural Networks.
    Volkov M; Turk JA; Drizard N; Martin N; Hoffmann B; Gaston-Mathé Y; Rognan D
    J Med Chem; 2022 Jun; 65(11):7946-7958. PubMed ID: 35608179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SadNet: a novel multimodal fusion network for protein-ligand binding affinity prediction.
    Hong Q; Zhou G; Qin Y; Shen J; Li H
    Phys Chem Chem Phys; 2024 Apr; 26(16):12880-12891. PubMed ID: 38625412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graph Convolutional Capsule Regression (GCCR): A Model for Accelerated Filtering of Novel Potential Candidates for SARS-CoV-2 based on Binding Affinity.
    Krishnan A; Vinod D
    Curr Comput Aided Drug Des; 2024; 20(1):33-41. PubMed ID: 37005531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein-ligand binding affinity via deep learning models.
    Wang H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PlayMolecule Glimpse: Understanding Protein-Ligand Property Predictions with Interpretable Neural Networks.
    Varela-Rial A; Maryanow I; Majewski M; Doerr S; Schapin N; Jiménez-Luna J; De Fabritiis G
    J Chem Inf Model; 2022 Jan; 62(2):225-231. PubMed ID: 34978201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing Generalizability in Protein-Ligand Binding Affinity Prediction with Multimodal Contrastive Learning.
    Luo D; Liu D; Qu X; Dong L; Wang B
    J Chem Inf Model; 2024 Mar; 64(6):1892-1906. PubMed ID: 38441880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.