These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37983387)

  • 21. A Versatile Extended Stöber Approach to Monodisperse Sub-40 nm Carbon Nanospheres for Stabilizing Atomically Dispersed Fe─N
    Lu T; Zhang S; Zhou Q; Wang R; Pang H; Yang J; Zhang M; Xu L; Xi S; Sun D; Jin C; Tang Y
    Small; 2023 Nov; 19(45):e2303329. PubMed ID: 37438567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-Level Fe-N-C Coupled with Fe
    Sun X; Wei P; Gu S; Zhang J; Jiang Z; Wan J; Chen Z; Huang L; Xu Y; Fang C; Li Q; Han J; Huang Y
    Small; 2020 Feb; 16(6):e1906057. PubMed ID: 31885216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Bifunctional Highly Efficient FeN
    Li E; Yang F; Wu Z; Wang Y; Ruan M; Song P; Xing W; Xu W
    Small; 2018 Feb; 14(8):. PubMed ID: 29323454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Preparation of Fe-N
    Zhao YM; Zhang PC; Xu C; Zhou XY; Liao LM; Wei PJ; Liu E; Chen H; He Q; Liu JG
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17334-17342. PubMed ID: 32207602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfuration of an Fe-N-C Catalyst Containing Fe
    Qiao Y; Yuan P; Hu Y; Zhang J; Mu S; Zhou J; Li H; Xia H; He J; Xu Q
    Adv Mater; 2018 Nov; 30(46):e1804504. PubMed ID: 30302828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts.
    Xie X; Peng L; Yang H; Waterhouse GIN; Shang L; Zhang T
    Adv Mater; 2021 Jun; 33(23):e2101038. PubMed ID: 33914371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a highly active FeNC catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes.
    Mehmood A; Ali B; Gong M; Gyu Kim M; Kim JY; Bae JH; Kucernak A; Kang YM; Nam KW
    J Colloid Interface Sci; 2021 Aug; 596():148-157. PubMed ID: 33839348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells.
    Zhang PY; Yang XH; Jiang QR; Cui PX; Zhou ZY; Sun SH; Wang YC; Sun SG
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30724-30734. PubMed ID: 35766357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N
    Li S; Li Z; Huang T; Xie H; Miao Z; Liang J; Pan R; Wang T; Han J; Li Q
    ChemSusChem; 2023 Jan; 16(1):e202201795. PubMed ID: 36355035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic, Kinetic, and Mechanism Insights into the Oxygen-Reduction Catalyzed Based on the Biomass-Derived FeO
    Lu Z; Chen J; Wang W; Li W; Sun M; Wang Y; Wang X; Ye J; Rao H
    Small; 2021 May; 17(19):e2007326. PubMed ID: 33783972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts.
    Zhong L; Jensen JO; Cleemann LN; Pan C; Li Q
    Sci Bull (Beijing); 2018 Jan; 63(1):24-30. PubMed ID: 36658914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.
    Sanetuntikul J; Shanmugam S
    Nanoscale; 2015 May; 7(17):7644-50. PubMed ID: 25833146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts.
    Xu J; Bartholomew CH
    J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts.
    Xie J; Yin K; Serov A; Artyushkova K; Pham HN; Sang X; Unocic RR; Atanassov P; Datye AK; Davis RJ
    ChemSusChem; 2017 Jan; 10(2):359-362. PubMed ID: 27863066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy.
    Choi CH; Baldizzone C; Grote JP; Schuppert AK; Jaouen F; Mayrhofer KJ
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12753-7. PubMed ID: 26314711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic liquids as precursors for Fe-N doped carbon nanotube electrocatalysts for the oxygen reduction reaction.
    Mahmood A; Zhao B; Xie N; Niu L
    Nanoscale; 2021 Oct; 13(37):15804-15811. PubMed ID: 34528989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction.
    Chen Y; Li Z; Zhu Y; Sun D; Liu X; Xu L; Tang Y
    Adv Mater; 2019 Feb; 31(8):e1806312. PubMed ID: 30589127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FeN
    Gong L; Qiu X; Tratnyek PG; Liu C; He F
    Environ Sci Technol; 2021 Apr; 55(8):5393-5402. PubMed ID: 33729752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement.
    He Y; Liu S; Priest C; Shi Q; Wu G
    Chem Soc Rev; 2020 Jun; 49(11):3484-3524. PubMed ID: 32342064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts.
    Liu S; Wang M; Yang X; Shi Q; Qiao Z; Lucero M; Ma Q; More KL; Cullen DA; Feng Z; Wu G
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21698-21705. PubMed ID: 32820860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.