These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 37983481)

  • 1. Unified Model to Predict gRNA Efficiency across Diverse Cell Lines and CRISPR-Cas9 Systems.
    Zhong Z; Li Z; Yang J; Wang Q
    J Chem Inf Model; 2023 Dec; 63(23):7320-7329. PubMed ID: 37983481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing.
    Li J; Wu P; Cao Z; Huang G; Lu Z; Yan J; Zhang H; Zhou Y; Liu R; Chen H; Ma L; Luo M
    Cell Rep; 2024 Feb; 43(2):113765. PubMed ID: 38358884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
    Motoche-Monar C; Ordoñez JE; Chang O; Gonzales-Zubiate FA
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.
    Wang J; Zhang X; Cheng L; Luo Y
    RNA Biol; 2020 Jan; 17(1):13-22. PubMed ID: 31533522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design.
    Anthon C; Corsi GI; Gorodkin J
    Bioinformatics; 2022 Dec; 38(24):5437-5439. PubMed ID: 36271848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning Approach to Identify the Importance of Novel Features for CRISPR/Cas9 Activity Prediction.
    Vora DS; Verma Y; Sundar D
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Meta-Analysis of gRNA Library Screens Enables an Improved Understanding of the Impact of gRNA Folding and Structural Stability on CRISPR-Cas9 Activity.
    Moreb EA; Lynch MD
    CRISPR J; 2022 Feb; 5(1):146-154. PubMed ID: 35191752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPRedict: a CRISPR-Cas9 web tool for interpretable efficiency predictions.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Jul; 50(W1):W191-W198. PubMed ID: 35670672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified energetics analysis unravels SpCas9 cleavage activity for optimal gRNA design.
    Zhang D; Hurst T; Duan D; Chen SJ
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8693-8698. PubMed ID: 30988204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty-aware and interpretable evaluation of Cas9-gRNA and Cas12a-gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning.
    Kirillov B; Savitskaya E; Panov M; Ogurtsov AY; Shabalina SA; Koonin EV; Severinov KV
    Nucleic Acids Res; 2022 Jan; 50(2):e11. PubMed ID: 34791389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing in Chlamydomonas reinhardtii Using Cas9-gRNA Ribonucleoprotein Complex: A Step-by-Step Guide.
    Dhokane D; Kancharla N; Savarimuthu A; Bhadra B; Bandyopadhyay A; Dasgupta S
    Methods Mol Biol; 2023; 2653():207-217. PubMed ID: 36995629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection.
    Chen Y; Wang X
    Bioinformatics; 2022 Nov; 38(23):5175-5181. PubMed ID: 36227031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Maestroni L; Butti P; Senatore VG; Branduardi P
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36640150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9.
    Žun G; Doberšek K; Petrovič U
    Yeast; 2023 Jan; 40(1):32-41. PubMed ID: 36536407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Genome-Edited Mice by Cytoplasmic Injection of CRISPR-Cas9 RNA.
    Horii T; Hatada I
    Methods Mol Biol; 2023; 2637():75-86. PubMed ID: 36773139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.