BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37983733)

  • 1. Developing Liver Microphysiological Systems for Biomedical Applications.
    Wang J; Wu X; Zhao J; Ren H; Zhao Y
    Adv Healthc Mater; 2023 Nov; ():e2302217. PubMed ID: 37983733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications.
    Zhang S; Xu G; Wu J; Liu X; Fan Y; Chen J; Wallace G; Gu Q
    Small Methods; 2024 Jan; 8(1):e2300685. PubMed ID: 37798902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation.
    Rubiano A; Indapurkar A; Yokosawa R; Miedzik A; Rosenzweig B; Arefin A; Moulin CM; Dame K; Hartman N; Volpe DA; Matta MK; Hughes DJ; Strauss DG; Kostrzewski T; Ribeiro AJS
    Clin Transl Sci; 2021 May; 14(3):1049-1061. PubMed ID: 33382907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human biomimetic liver microphysiology systems in drug development and precision medicine.
    Gough A; Soto-Gutierrez A; Vernetti L; Ebrahimkhani MR; Stern AM; Taylor DL
    Nat Rev Gastroenterol Hepatol; 2021 Apr; 18(4):252-268. PubMed ID: 33335282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Microphysiological Immune System Responses on Chips.
    Miller CP; Shin W; Ahn EH; Kim HJ; Kim DH
    Trends Biotechnol; 2020 Aug; 38(8):857-872. PubMed ID: 32673588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated biosensors for monitoring microphysiological systems.
    Mou L; Mandal K; Mecwan MM; Hernandez AL; Maity S; Sharma S; Herculano RD; Kawakita S; Jucaud V; Dokmeci MR; Khademhosseini A
    Lab Chip; 2022 Oct; 22(20):3801-3816. PubMed ID: 36074812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing.
    Donoghue L; Nguyen KT; Graham C; Sethu P
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models.
    Lee SW; Jung DJ; Jeong GS
    Tissue Eng Regen Med; 2020 Dec; 17(6):731-745. PubMed ID: 32207030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
    Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G
    Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic models to advanced systems: harnessing the power of organoids-based microphysiological models of the human brain.
    Boylin K; Aquino GV; Purdon M; Abedi K; Kasendra M; Barrile R
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38749420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions.
    Pun S; Haney LC; Barrile R
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility.
    Pamies D; Ekert J; Zurich MG; Frey O; Werner S; Piergiovanni M; Freedman BS; Keong Teo AK; Erfurth H; Reyes DR; Loskill P; Candarlioglu P; Suter-Dick L; Wang S; Hartung T; Coecke S; Stacey GN; Wagegg BA; Dehne EM; Pistollato F; Leist M
    Stem Cell Reports; 2024 May; 19(5):604-617. PubMed ID: 38670111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Additive Manufacturing and 3D Bioprinting for Organs-On-A-Chip and Microphysiological Systems.
    Rothbauer M; Eilenberger C; Spitz S; Bachmann BEM; Kratz SRA; Reihs EI; Windhager R; Toegel S; Ertl P
    Front Bioeng Biotechnol; 2022; 10():837087. PubMed ID: 35252144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing the ADME Challenges of Compound Loss in a PDMS-Based Gut-on-Chip Microphysiological System.
    Carius P; Weinelt FA; Cantow C; Holstein M; Teitelbaum AM; Cui Y
    Pharmaceutics; 2024 Feb; 16(3):. PubMed ID: 38543190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems.
    Campbell SB; Wu Q; Yazbeck J; Liu C; Okhovatian S; Radisic M
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2880-2899. PubMed ID: 34275293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofabrication of vasculature in microphysiological models of bone.
    Whelan IT; Moeendarbary E; Hoey DA; Kelly DJ
    Biofabrication; 2021 Jul; 13(3):. PubMed ID: 34034238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.
    Shrestha S; Lekkala VKR; Acharya P; Siddhpura D; Lee MY
    Essays Biochem; 2021 Aug; 65(3):481-489. PubMed ID: 34296737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting on Organ-on-Chip: Development and Applications.
    Chliara MA; Elezoglou S; Zergioti I
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.