These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37984091)

  • 21. Taiwan's legal framework for marine pollution control and responses to marine oil spills and its implementation on T.S. Taipei cargo shipwreck salvage.
    Fan C; Hsu CJ; Lin JY; Kuan YK; Yang CC; Liu JH; Yeh JH
    Mar Pollut Bull; 2018 Nov; 136():84-91. PubMed ID: 30509845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A probabilistic model of decision making regarding the use of chemical dispersants to combat oil spills in the German Bight.
    Liu Z; Callies U
    Water Res; 2020 Feb; 169():115196. PubMed ID: 31670089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Year-to-year variability of oil pollution along the Eastern Arabian Sea: The impact of COVID-19 imposed lock-downs.
    Trinadha Rao V; Suneel V; Raajvanshi I; Alex MJ; Thomas AP
    Mar Pollut Bull; 2022 Feb; 175():113356. PubMed ID: 35144213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dynamical systems perspective for a real-time response to a marine oil spill.
    García-Garrido VJ; Ramos A; Mancho AM; Coca J; Wiggins S
    Mar Pollut Bull; 2016 Nov; 112(1-2):201-210. PubMed ID: 27539636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevention of oil spill from shipping by modelling of dynamic risk.
    Eide MS; Endresen O; Breivik O; Brude OW; Ellingsen IH; Røang K; Hauge J; Brett PO
    Mar Pollut Bull; 2007 Oct; 54(10):1619-33. PubMed ID: 17765267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck.
    Amir-Heidari P; Arneborg L; Lindgren JF; Lindhe A; Rosén L; Raie M; Axell L; Hassellöv IM
    Environ Int; 2019 May; 126():309-320. PubMed ID: 30825750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Tasman Spirit oil spill: implications for regulatory change in Pakistan.
    Mian S; Bennett S
    Disasters; 2009 Jul; 33(3):390-411. PubMed ID: 19178550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Risk assessment of marine oil spills using dynamic Bayesian network analyses.
    Liu Z; Han Z; Chen Q; Shi X; Ma Q; Cai B; Liu Y
    Environ Pollut; 2023 Jan; 317():120716. PubMed ID: 36427830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian inference modeling to rank response technologies in arctic marine oil spills.
    Das T; Goerlandt F
    Mar Pollut Bull; 2022 Dec; 185(Pt A):114203. PubMed ID: 36272316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk of large oil spills: a statistical analysis in the aftermath of Deepwater Horizon.
    Eckle P; Burgherr P; Michaux E
    Environ Sci Technol; 2012 Dec; 46(23):13002-8. PubMed ID: 23127138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative ecological risk assessment of oil spills: The case of the Fernando de Noronha Archipelago.
    Siqueira PG; Moura MDC; Duarte HO
    Mar Pollut Bull; 2023 Apr; 189():114791. PubMed ID: 36898270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oil spill problems and sustainable response strategies through new technologies.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Elkin AA; Makarov SO; Cunningham CJ; Peshkur TA; Atlas RM; Philp JC
    Environ Sci Process Impacts; 2015 Jul; 17(7):1201-19. PubMed ID: 26089295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proactive system for maritime environment monitoring.
    Moroni D; Pieri G; Tampucci M; Salvetti O
    Mar Pollut Bull; 2016 Jan; 102(2):316-22. PubMed ID: 26233300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the effectiveness of oil combating from an ecological perspective--a Bayesian network for the Gulf of Finland; the Baltic Sea.
    Helle I; Lecklin T; Jolma A; Kuikka S
    J Hazard Mater; 2011 Jan; 185(1):182-92. PubMed ID: 20934249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An n-valued neutrosophic set method for the assessment of an offshore oil spill risk.
    Han M; Fan C; Huang S; Hu K; Fan E
    Water Sci Technol; 2023 Apr; 87(7):1643-1659. PubMed ID: 37051788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of magnetite nanomaterials employing novel ionic liquids for efficient oil spill cleanup.
    Abdullah MMS; Faqihi NA; Al-Lohedan HA; Almarhoon ZM; Mohammad F
    J Environ Manage; 2022 Aug; 316():115194. PubMed ID: 35537267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of human error probability during the hydrocarbon road tanker loading operation using a hybrid technique of fuzzy sets, Bayesian network and CREAM.
    Ghasemi F; Ghasemi A; Kalatpour O
    Int J Occup Saf Ergon; 2022 Sep; 28(3):1342-1352. PubMed ID: 33593239
    [No Abstract]   [Full Text] [Related]  

  • 38. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland.
    Helle I; Ahtiainen H; Luoma E; Hänninen M; Kuikka S
    J Environ Manage; 2015 Aug; 158():122-32. PubMed ID: 25983196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of using chemical dispersants to combat oil spills in the German Bight - Depiction by means of a Bayesian network.
    Liu Z; Callies U
    Environ Pollut; 2019 May; 248():609-620. PubMed ID: 30836242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational application of chemicals in response to oil spills may reduce environmental damage.
    Tamis JE; Jongbloed RH; Karman CC; Koops W; Murk AJ
    Integr Environ Assess Manag; 2012 Apr; 8(2):231-41. PubMed ID: 21853522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.