BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37984098)

  • 1. A cluster-based ensemble approach for congenital heart disease prediction.
    Kaur I; Ahmad T
    Comput Methods Programs Biomed; 2024 Jan; 243():107922. PubMed ID: 37984098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods.
    Ijaz MF; Attique M; Son Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast cancer data analysis for survivability studies and prediction.
    Shukla N; Hagenbuchner M; Win KT; Yang J
    Comput Methods Programs Biomed; 2018 Mar; 155():199-208. PubMed ID: 29512500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting congenital heart defects: A comparison of three data mining methods.
    Luo Y; Li Z; Guo H; Cao H; Song C; Guo X; Zhang Y
    PLoS One; 2017; 12(5):e0177811. PubMed ID: 28542318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.
    Abnoosian K; Farnoosh R; Behzadi MH
    BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
    Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y
    JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid Stacking-SMOTE model for optimizing the prediction of autistic genes.
    Ismail E; Gad W; Hashem M
    BMC Bioinformatics; 2023 Oct; 24(1):379. PubMed ID: 37803253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of coronary heart disease in gout patients using machine learning models.
    Jiang L; Chen S; Wu Y; Zhou D; Duan L
    Math Biosci Eng; 2023 Jan; 20(3):4574-4591. PubMed ID: 36896513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the postoperative blood coagulation state of children with congenital heart disease by machine learning based on real-world data.
    Guo K; Fu X; Zhang H; Wang M; Hong S; Ma S
    Transl Pediatr; 2021 Jan; 10(1):33-43. PubMed ID: 33633935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stroke Prediction with Machine Learning Methods among Older Chinese.
    Wu Y; Fang Y
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project.
    Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DBCSMOTE: a clustering-based oversampling technique for data-imbalanced warfarin dose prediction.
    Tao Y; Zhang Y; Jiang B
    BMC Med Genomics; 2020 Oct; 13(Suppl 10):152. PubMed ID: 33087117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-Based and Model-Free Techniques for Amyotrophic Lateral Sclerosis Diagnostic Prediction and Patient Clustering.
    Tang M; Gao C; Goutman SA; Kalinin A; Mukherjee B; Guan Y; Dinov ID
    Neuroinformatics; 2019 Jul; 17(3):407-421. PubMed ID: 30460455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An idiosyncratic MIMBO-NBRF based automated system for child birth mode prediction.
    S H; V MA
    Artif Intell Med; 2023 Sep; 143():102621. PubMed ID: 37673564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing fetal health prediction: Ensemble modeling with fusion of feature selection and extraction techniques for cardiotocography data.
    Kapila R; Saleti S
    Comput Biol Chem; 2023 Dec; 107():107973. PubMed ID: 37926049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient ensemble based machine learning approach for predicting Chronic Kidney Disease.
    Chhabra D; Juneja M; Chutani G
    Curr Med Imaging; 2023 May; ():. PubMed ID: 37157217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic pediatric congenital heart disease classification based on heart sound signal.
    Xu W; Yu K; Ye J; Li H; Chen J; Yin F; Xu J; Zhu J; Li D; Shu Q
    Artif Intell Med; 2022 Apr; 126():102257. PubMed ID: 35346440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Prediction of Diabetes Using an Ensemble of Machine Learning Models.
    Dutta A; Hasan MK; Ahmad M; Awal MA; Islam MA; Masud M; Meshref H
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.