These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37984219)

  • 1. Consequence assessment of hypothetical urban radiological dispersal device incident in Korea.
    Oboo M; Nytak VB; Bulelwa N; Kim J
    J Environ Radioact; 2024 Feb; 272():107332. PubMed ID: 37984219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urban critical infrastructure disruption after a radiological dispersive device event.
    Andrade ER; Reis ALQ; Alves DF; Alves IS; Andrade EVSL; Stenders RM; Federico CA; Silva AX
    J Environ Radioact; 2020 Oct; 222():106358. PubMed ID: 32745885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OFF-SITE RADIOLOGICAL DOSE ASSESSMENT IN A SEVERE NUCLEAR ACCIDENT OF APR1400.
    Uddin GMB; Kim J
    Radiat Prot Dosimetry; 2020 Sep; 190(3):276-282. PubMed ID: 32761060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vertical radiation dose profile and decision-making in a simulated urban event.
    Alves IS; Castro MSC; Stenders RM; Silva RW; Brum T; Silva AX; Andrade ER
    J Environ Radioact; 2019 Nov; 208-209():106034. PubMed ID: 31454588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of realistic RDD scenarios and their radiological consequence analyses.
    Shin H; Kim J
    Appl Radiat Isot; 2009; 67(7-8):1516-20. PubMed ID: 19318261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total effective dose equivalent assessment after exposure to high-level natural radiation using the RESRAD code.
    Ziajahromi S; Khanizadeh M; Nejadkoorki F
    Environ Monit Assess; 2014 Mar; 186(3):1907-15. PubMed ID: 24201557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose assessment for reentry or reoccupancy and recovery of urban areas contaminated by a radiological dispersal device: the need for a consensus approach.
    Sullivan T; Musolino SV; DeFranco J
    Health Phys; 2008 May; 94(5):411-7. PubMed ID: 18403962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiological risk assessment caused by RDD terrorism in an urban area.
    Jeong H; Park M; Jeong H; Hwang W; Kim E; Han M
    Appl Radiat Isot; 2013 Sep; 79():1-4. PubMed ID: 23711992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiological Dose Assessment to Members of the Public Using Consumer Products Containing Naturally Occurring Radioactive Materials in Korea.
    Joseph SR; Kim J
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A MCREXS modelling approach for the simulation of a radiological dispersal device.
    Ivan L; Hummel D; Lebel L
    J Environ Radioact; 2018 Dec; 192():551-564. PubMed ID: 30142583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the EMRAS urban working group hypothetical scenario using the RESRAD-RDD methodology.
    Kamboj S; Cheng JJ; Yu C; Domotor S; Wallo A
    J Environ Radioact; 2009 Dec; 100(12):1012-8. PubMed ID: 19403213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Potential Facility Risk Index for Radiological Security.
    Rane S; Harris J
    Risk Anal; 2021 Aug; 41(8):1257-1273. PubMed ID: 33205479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of Radiological Health Risks from Gold Mine Tailings in Wonderfonteinspruit Catchment Area, South Africa.
    Mathuthu M; Kamunda C; Madhuku M
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27338424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the potential impact of embedded radioactive fragments following the use of a crude radiological dispersal device ('dirty bomb').
    Jones L; Moor D; Peacock T; Melley T; Foster C; Bland S; Gibb I; Napier I
    J Radiol Prot; 2020 Oct; 40(4):. PubMed ID: 33124602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated physical dispersion and behavioral response model for risk assessment of radiological dispersion device (RDD) events.
    Dombroski MJ; Fischbeck PS
    Risk Anal; 2006 Apr; 26(2):501-14. PubMed ID: 16573636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial deconvolution of aerial radiometric survey and its application to the fallout from a radiological dispersal device.
    Sinclair LE; Fortin R
    J Environ Radioact; 2019 Feb; 197():39-47. PubMed ID: 30530038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerial Mobile Radiation Survey Following Detonation of a Radiological Dispersal Device.
    Sinclair LE; Fortin R; Buckle JL; Coyle MJ; Van Brabant RA; Harvey BJ; Seywerd HC; McCurdy MW
    Health Phys; 2016 May; 110(5):458-70. PubMed ID: 27023033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of radiological consequence of a hypothetical accident at the Ghana Research Reactor-1 facility based on terrorist attack.
    Obeng HK; Birikorang SA; Gyamfi K; Adu S; Nyamful A
    Sci Prog; 2021 Oct; 104(4):368504211054986. PubMed ID: 34821181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiological Risk Assessment by Convergence Methodology Model in RDD Scenarios.
    Rother FC; Rebello WF; Healy MJ; Silva MM; Cabral PA; Vital HC; Andrade ER
    Risk Anal; 2016 Nov; 36(11):2039-2046. PubMed ID: 26895431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updated Emergency Response Guidance for the First 48 h after the Outdoor Detonation of an Explosive Radiological Dispersal Device.
    Musolino SV; Harper FT; Buddemeier B; Brown M; Schlueck R
    Health Phys; 2013 Jul; 105(1):65-73. PubMed ID: 35606998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.