BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37984650)

  • 1. Integrative physiological, transcriptomic and metabolomic analysis reveals how the roots of two ornamental Hydrangea macrophylla cultivars cope with lead (Pb) toxicity.
    Zhang Y; Song Z; Zhao H; Chen H; Zhao B
    Sci Total Environ; 2024 Feb; 910():168615. PubMed ID: 37984650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure.
    Jin J; Song Z; Zhao B; Zhang Y; Wang R
    Ecotoxicol Environ Saf; 2022 Sep; 243():113960. PubMed ID: 35985200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead, zinc tolerance mechanism and phytoremediation potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and ethylenediaminetetraacetic acid effect.
    Duan Y; Zhang Y; Zhao B
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):41329-41343. PubMed ID: 35088277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals.
    Chen S; Qi X; Feng J; Chen H; Qin Z; Wang H; Deng Y
    Plant Physiol Biochem; 2022 Aug; 185():268-278. PubMed ID: 35724621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress.
    Guo Z; Yuan X; Li T; Wang S; Yu Y; Liu C; Duan C
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research advances in plant lead tolerance and detoxification mechanism].
    Huang HG; Li TX; Yang XE; Zhang XZ; Wu DY
    Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):696-704. PubMed ID: 19637613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii.
    Huang H; Gupta DK; Tian S; Yang XE; Li T
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1640-51. PubMed ID: 22146912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification.
    Chen H; Lu C; Jiang H; Peng J
    PLoS One; 2015; 10(12):e0144927. PubMed ID: 26660093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress.
    Yang X; Chen Y; Liu W; Huang T; Yang Y; Mao Y; Meng Y
    Sci Total Environ; 2024 May; 923():171497. PubMed ID: 38453091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization.
    Jebara SH; Saadani O; Fatnassi IC; Chiboub M; Abdelkrim S; Jebara M
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2537-45. PubMed ID: 25185494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated transcriptomics and metabolomics revealed the mechanism of catechin biosynthesis in response to lead stress in tung tree (Vernicia fordii).
    Dong X; Li W; Li C; Akan OD; Liao C; Cao J; Zhang L
    Sci Total Environ; 2024 Jun; 930():172796. PubMed ID: 38692325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pb-induced changes in roots of two cultivated rice cultivars grown in lead-contaminated soil mediated by smoke.
    Akhtar N; Khan S; Malook I; Rehman SU; Jamil M
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21298-21310. PubMed ID: 28741209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil.
    Li L; Zheng C; Fu Y; Wu D; Yang X; Shen H
    Biol Trace Elem Res; 2012 Jan; 145(1):101-8. PubMed ID: 21826608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative physiological, transcriptomic, and metabolomic analysis of
    Wu M; Xu Q; Tang T; Li X; Pan Y
    Front Plant Sci; 2024; 15():1389207. PubMed ID: 38916029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations.
    Cui J; Li J; Dai C; Li L
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant enzymes and proteins of wetland plants: their relation to Pb tolerance and accumulation.
    Yang J; Ye Z
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):1931-9. PubMed ID: 25269838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-molecular-weight organic acid-mediated tolerance and Pb accumulation in centipedegrass under Pb stress.
    Cai X; Fu J; Li X; Peng L; Yang L; Liang Y; Jiang M; Ma J; Sun L; Guo B; Yu X
    Ecotoxicol Environ Saf; 2022 Aug; 241():113755. PubMed ID: 35689889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical changes, osmolytes accumulation and distribution in the native plants growing on Pb-contaminated sites.
    Adejumo SA; Oniosun B; Akpoilih OA; Adeseko A; Arowo DO
    Environ Geochem Health; 2021 Apr; 43(4):1537-1549. PubMed ID: 32601905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress.
    Javed MT; Akram MS; Habib N; Tanwir K; Ali Q; Niazi NK; Gul H; Iqbal N
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2958-2971. PubMed ID: 29147985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.