These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Angiotensin-(1-7) inhibits autophagy in the brain of spontaneously hypertensive rats. Jiang T; Gao L; Zhu XC; Yu JT; Shi JQ; Tan MS; Lu J; Tan L; Zhang YD Pharmacol Res; 2013 May; 71():61-8. PubMed ID: 23499735 [TBL] [Abstract][Full Text] [Related]
23. Reconstitution of autophagy ameliorates vascular function and arterial stiffening in spontaneously hypertensive rats. McCarthy CG; Wenceslau CF; Calmasini FB; Klee NS; Brands MW; Joe B; Webb RC Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H1013-H1027. PubMed ID: 31469290 [TBL] [Abstract][Full Text] [Related]
24. Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Wang X; Desai K; Clausen JT; Wu L Kidney Int; 2004 Dec; 66(6):2315-21. PubMed ID: 15569321 [TBL] [Abstract][Full Text] [Related]
25. Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal. Li W; Maloney RE; Circu ML; Alexander JS; Aw TY Free Radic Biol Med; 2013 Jan; 54():51-61. PubMed ID: 23108103 [TBL] [Abstract][Full Text] [Related]
26. Effect of the traditional Chinese medicine Pinggan-Qianyang decoction on SIRT1-PTEN signaling in vascular aging in spontaneously hypertensive rats. Cui Z; Jiamei Y; Yushu Y; Xia F; Haiyan Y; Zhang D; Qiong C; Guangwei Z Hypertens Res; 2021 Sep; 44(9):1087-1098. PubMed ID: 34188208 [TBL] [Abstract][Full Text] [Related]
27. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. Guo Q; Mori T; Jiang Y; Hu C; Osaki Y; Yoneki Y; Sun Y; Hosoya T; Kawamata A; Ogawa S; Nakayama M; Miyata T; Ito S J Hypertens; 2009 Aug; 27(8):1664-71. PubMed ID: 19531965 [TBL] [Abstract][Full Text] [Related]
28. Effects of angiotensin II type 1 receptor blockade on the oxidative stress in spontaneously hypertensive rat tissues. Polizio AH; Peña C Regul Pept; 2005 May; 128(1):1-5. PubMed ID: 15721481 [TBL] [Abstract][Full Text] [Related]
29. Chronic antioxidant treatment improves sympathetic functions and beta-adrenergic pathway in the spontaneously hypertensive rats. Girouard H; Chulak C; LeJossec M; Lamontagne D; de Champlain J J Hypertens; 2003 Jan; 21(1):179-88. PubMed ID: 12544450 [TBL] [Abstract][Full Text] [Related]
30. Heterologous regulation of the cannabinoid type 1 receptor by angiotensin II in astrocytes of spontaneously hypertensive rats. Haspula D; Clark MA J Neurochem; 2016 Nov; 139(4):523-536. PubMed ID: 27529509 [TBL] [Abstract][Full Text] [Related]
31. Treatment with the cytochrome P450 ω-hydroxylase inhibitor HET0016 attenuates cerebrovascular inflammation, oxidative stress and improves vasomotor function in spontaneously hypertensive rats. Toth P; Csiszar A; Sosnowska D; Tucsek Z; Cseplo P; Springo Z; Tarantini S; Sonntag WE; Ungvari Z; Koller A Br J Pharmacol; 2013 Apr; 168(8):1878-88. PubMed ID: 23194285 [TBL] [Abstract][Full Text] [Related]
32. Mas receptor is translocated to the nucleus upon agonist stimulation in brainstem neurons from spontaneously hypertensive rats but not normotensive rats. Cerniello FM; Silva MG; Carretero OA; Gironacci MM Cardiovasc Res; 2020 Oct; 116(12):1995-2008. PubMed ID: 31825460 [TBL] [Abstract][Full Text] [Related]
33. The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Sabbatini M; Catalani A; Consoli C; Marletta N; Tomassoni D; Avola R Mech Ageing Dev; 2002 Mar; 123(5):547-59. PubMed ID: 11796140 [TBL] [Abstract][Full Text] [Related]
34. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats. Dhar I; Dhar A; Wu L; Desai KM PLoS One; 2013; 8(9):e74212. PubMed ID: 24040205 [TBL] [Abstract][Full Text] [Related]
35. Sex-specific differences in age-dependent progression of aortic dysfunction and related cardiac remodeling in spontaneously hypertensive rats. Al-Gburi S; Deussen AJ; Galli R; Muders MH; Zatschler B; Neisser A; Müller B; Kopaliani I Am J Physiol Regul Integr Comp Physiol; 2017 May; 312(5):R835-R849. PubMed ID: 28274938 [TBL] [Abstract][Full Text] [Related]
36. Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Baumann M; Bartholome R; Peutz-Kootstra CJ; Smits JF; Struijker-Boudier HA Am J Hypertens; 2008 Feb; 21(2):177-82. PubMed ID: 18188163 [TBL] [Abstract][Full Text] [Related]
37. Transient prehypertensive treatment in spontaneously hypertensive rats: a comparison of losartan and amlodipine regarding long-term blood pressure, cardiac and renal protection. Peng F; Lin J; Lin L; Tang H Int J Mol Med; 2012 Dec; 30(6):1376-86. PubMed ID: 23064712 [TBL] [Abstract][Full Text] [Related]
38. Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla. Lee YH; Tsai MC; Li TL; Dai YW; Huang SC; Hwang LL Exp Physiol; 2015 Sep; 100(9):993-1007. PubMed ID: 26096870 [TBL] [Abstract][Full Text] [Related]
39. Changes of retinal neurons and glial fibrillary acid protein immunoreactive astrocytes in spontaneously hypertensive rats. Sabbatini M; Strocchi P; Vitaioli L; Amenta F J Hypertens; 2001 Oct; 19(10):1861-9. PubMed ID: 11593108 [TBL] [Abstract][Full Text] [Related]
40. Angiotensin II regulation of angiotensin-converting enzymes in spontaneously hypertensive rat primary astrocyte cultures. Gowrisankar YV; Clark MA J Neurochem; 2016 Jul; 138(1):74-85. PubMed ID: 27085714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]