BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37984848)

  • 1. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction.
    Perin GB; Moreno S; Zhou Y; Günther M; Boye S; Voit B; Felisberti MI; Appelhans D
    Biomacromolecules; 2023 Dec; 24(12):5807-5822. PubMed ID: 37984848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active coacervate droplets as a model for membraneless organelles and protocells.
    Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J
    Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic-Induced Reconfiguration and Activation in Membranized Coacervate-Based Protocells.
    Zhang Y; Wang Z; Li M; Xu C; Gao N; Yin Z; Wang K; Mann S; Liu J
    J Am Chem Soc; 2023 May; 145(18):10396-10403. PubMed ID: 37104061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell.
    Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H
    Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Cell-Inspired Membranization of Coacervate Protocells with a Structured Polysaccharide Layer.
    Ji Y; Lin Y; Qiao Y
    J Am Chem Soc; 2023 Jun; 145(23):12576-12585. PubMed ID: 37267599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predatory behaviour in synthetic protocell communities.
    Qiao Y; Li M; Booth R; Mann S
    Nat Chem; 2017 Feb; 9(2):110-119. PubMed ID: 28282044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.
    Gao N; Xu C; Yin Z; Li M; Mann S
    J Am Chem Soc; 2022 Mar; 144(9):3855-3862. PubMed ID: 35192333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-confined liquid-liquid phase separation toward artificial organelles.
    Mu W; Ji Z; Zhou M; Wu J; Lin Y; Qiao Y
    Sci Adv; 2021 May; 7(22):. PubMed ID: 34049872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Transformation from Membrane-less Coacervates to Membranized Coacervates and Giant Vesicles: toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Appelhans D; Zhou Y; Zhang K; Moreno S; Temme A; Voit B
    Angew Chem Int Ed Engl; 2024 Jun; ():e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Organization in Proteinaceous Membrane-Stabilized Coacervate Protocells.
    Li J; Liu X; Abdelmohsen LKEA; Williams DS; Huang X
    Small; 2019 Sep; 15(36):e1902893. PubMed ID: 31298806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells.
    Liu S; Zhang Y; Li M; Xiong L; Zhang Z; Yang X; He X; Wang K; Liu J; Mann S
    Nat Chem; 2020 Dec; 12(12):1165-1173. PubMed ID: 33219364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells.
    Gobbo P; Tian L; Pavan Kumar BVVS; Turvey S; Cattelan M; Patil AJ; Carraro M; Bonchio M; Mann S
    Nat Commun; 2020 Jan; 11(1):41. PubMed ID: 31900396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes.
    Jiang L; Zeng Y; Li H; Lin Z; Liu H; Richardson JJ; Gao Z; Wu D; Liu L; Caruso F; Zhou J
    J Am Chem Soc; 2023 Nov; 145(44):24108-24115. PubMed ID: 37788442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field-induced circulation and vacuolization regulate enzyme reactions in coacervate-based protocells.
    Yin Y; Chang H; Jing H; Zhang Z; Yan D; Mann S; Liang D
    Soft Matter; 2018 Aug; 14(31):6514-6520. PubMed ID: 30051115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.