These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37984879)

  • 21. Observation of Charge Separation Enhancement in Plasmonic Photocatalysts under Coupling Conditions.
    Gao Y; Zhu Q; He S; Wang S; Nie W; Wu K; Fan F; Li C
    Nano Lett; 2023 Apr; 23(8):3540-3548. PubMed ID: 37026801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives.
    Li H; Li J; Ai Z; Jia F; Zhang L
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):122-138. PubMed ID: 28635079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures.
    Fawzi T; Rani S; Roy SC; Lee H
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing interfacial charge transfer in heterojunctions for photocatalysis.
    Li M; Gong Y; Wang Y; He T
    Phys Chem Chem Phys; 2022 Aug; 24(33):19659-19672. PubMed ID: 35968928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous hollow black TiO
    Jiang X; Yan Z; Zhang J; Gao J; Huang W; Shi Q; Zhang H
    RSC Adv; 2019 Nov; 9(63):36907-36914. PubMed ID: 35539040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy.
    Rezaei M; Nezamzadeh-Ejhieh A; Massah AR
    ACS Omega; 2024 Feb; 9(6):6093-6127. PubMed ID: 38371849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications.
    Gao C; Low J; Long R; Kong T; Zhu J; Xiong Y
    Chem Rev; 2020 Nov; 120(21):12175-12216. PubMed ID: 32186373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts.
    Prabhakar Vattikuti SV; Zeng J; Ramaraghavulu R; Shim J; Mauger A; Julien CM
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled growth of AgI nanoparticles on hollow WO
    Zhi L; Zhang S; Xu Y; Tu J; Li M; Hu D; Liu J
    J Colloid Interface Sci; 2020 Nov; 579():754-765. PubMed ID: 32673852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Embedded carbon in a carbon nitride hollow sphere for enhanced charge separation and photocatalytic water splitting.
    Luo L; Ma J; Zhu H; Tang J
    Nanoscale; 2020 Apr; 12(13):7339-7346. PubMed ID: 32202586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation.
    Yu Z; Ji N; Xiong J; Han Y; Li X; Zhang R; Qiao Y; Zhang M; Lu X
    Small; 2022 Aug; 18(32):e2201361. PubMed ID: 35760757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research progress of dual-atom site catalysts for photocatalysis.
    Wu J; Zhong H; Huang ZF; Zou JJ; Zhang X; Zhang YC; Pan L
    Nanoscale; 2024 May; 16(19):9169-9185. PubMed ID: 38639199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Insights into the Fundamental Principle of Semiconductor Photocatalysis.
    Liu B; Wu H; Parkin IP
    ACS Omega; 2020 Jun; 5(24):14847-14856. PubMed ID: 32596623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implanting CoO
    Wang Y; Fan G; Wang S; Li Y; Guo Y; Luan D; Gu X; Lou XWD
    Adv Mater; 2022 Oct; 34(42):e2204865. PubMed ID: 36048463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Diffusion in Nanoreactors' Pore Channel System: Measurement Techniques, Structural Regulation, and Catalytic Effects.
    Yan K; Lu X; Zhang R; Xiong J; Qiao Y; Li X; Yu Z
    Small; 2023 Dec; 19(50):e2304008. PubMed ID: 37632316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution.
    Wang J; Wang G; Jiang J; Wan Z; Su Y; Tang H
    J Colloid Interface Sci; 2020 Mar; 564():322-332. PubMed ID: 31918200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis.
    Khanchandani S; Srivastava PK; Kumar S; Ghosh S; Ganguli AK
    Inorg Chem; 2014 Sep; 53(17):8902-12. PubMed ID: 25144692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoporous black TiO
    Hu Y; Yan Z; Du L; Yu Y; Huang W; Shi Q
    Opt Express; 2023 Oct; 31(21):33883-33897. PubMed ID: 37859158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.
    Xiao FX; Miao J; Tao HB; Hung SF; Wang HY; Yang HB; Chen J; Chen R; Liu B
    Small; 2015 May; 11(18):2115-31. PubMed ID: 25641821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.