BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37985110)

  • 21. Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO
    Santos-Rosales V; Magariños B; Alvarez-Lorenzo C; García-González CA
    Int J Pharm; 2022 Jan; 612():121362. PubMed ID: 34896562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system.
    Gao X; Xu Z; Li S; Cheng L; Xu D; Li L; Chen L; Xu Y; Liu Z; Liu Y; Sun J
    RSC Adv; 2023 Jan; 13(6):3759-3765. PubMed ID: 36756570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold.
    Cao Z; Jiang D; Yan L; Wu J
    Int J Nanomedicine; 2017; 12():1841-1851. PubMed ID: 28331309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vancomycin-Loaded 3D-Printed Polylactic Acid-Hydroxyapatite Scaffolds for Bone Tissue Engineering.
    Pérez-Davila S; Potel-Alvarellos C; Carballo R; González-Rodríguez L; López-Álvarez M; Serra J; Díaz-Rodríguez P; Landín M; González P
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin.
    López-Iglesias C; Barros J; Ardao I; Gurikov P; Monteiro FJ; Smirnova I; Alvarez-Lorenzo C; García-González CA
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32013071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite.
    Rastin H; Ramezanpour M; Hassan K; Mazinani A; Tung TT; Vreugde S; Losic D
    Carbohydr Polym; 2021 Jul; 264():117989. PubMed ID: 33910727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration.
    Diaz-Gomez L; García-González CA; Wang J; Yang F; Aznar-Cervantes S; Cenis JL; Reyes R; Delgado A; Évora C; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2017 Jul; 527(1-2):115-125. PubMed ID: 28539234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acceleration of Bone Regeneration in Critical-Size Defect Using BMP-9-Loaded nHA/ColI/MWCNTs Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells.
    Zhang R; Li X; Liu Y; Gao X; Zhu T; Lu L
    Biomed Res Int; 2019; 2019():7343957. PubMed ID: 31111065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold.
    Cao Z; Jiang D; Yan L; Wu J
    J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.
    Wu H; Lei P; Liu G; Shrike Zhang Y; Yang J; Zhang L; Xie J; Niu W; Liu H; Ruan J; Hu Y; Zhang C
    Sci Rep; 2017 Mar; 7(1):359. PubMed ID: 28337023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function.
    Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA
    Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.