These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37985112)
1. Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks. Shi Z; Yang D; Zhou Y; Chen X; Gan L; Huang J Carbohydr Polym; 2024 Jan; 324():121539. PubMed ID: 37985112 [TBL] [Abstract][Full Text] [Related]
2. Uniform Growth of Nanocrystalline ZIF-8 on Cellulose Nanocrystals: Useful Template for Microporous Organic Polymers. Cho K; Andrew LJ; MacLachlan MJ Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300960. PubMed ID: 36869007 [TBL] [Abstract][Full Text] [Related]
3. Additive printing of recyclable anti-counterfeiting patterns with sol-gel cellulose nanocrystal inks. Li D; Yuan J; Cheng Q; Wei P; Cheng GJ; Chang C Nanoscale; 2021 Jul; 13(27):11808-11816. PubMed ID: 34227638 [TBL] [Abstract][Full Text] [Related]
4. Integrate nanoscale assembly and plasmonic resonance to enhance photoluminescence of cellulose nanocrystals for optical information hiding and reading. Zheng S; Liu S; Xiao B; Liu L; Wan X; Gong Y; Wei S; Luo C; Gan L; Huang J Carbohydr Polym; 2021 Feb; 253():117260. PubMed ID: 33278942 [TBL] [Abstract][Full Text] [Related]
5. Self-assembled materials from cellulose nanocrystals conjugated with a thermotropic liquid crystalline moiety. Masese FK; Ndaya D; Liu CH; Eddy N; Morales-Acosta MD; Nieh MP; Kasi RM Soft Matter; 2022 Nov; 18(42):8165-8174. PubMed ID: 36263742 [TBL] [Abstract][Full Text] [Related]
6. Inkjet Printed Photonic Cellulose Nanocrystal Patterns. Williams CA; Parker RM; Kyriacou A; Murace M; Vignolini S Adv Mater; 2024 Jan; 36(1):e2307563. PubMed ID: 37965844 [TBL] [Abstract][Full Text] [Related]
7. Self-supported MOF/cellulose-nanocrystals materials designed from ultrafiltration. Metilli L; Ugo H; Chèvremont W; Picard C; Pignon F Soft Matter; 2023 Nov; 19(42):8228-8239. PubMed ID: 37861338 [TBL] [Abstract][Full Text] [Related]
8. Stimuli-responsive flexible membrane via co-assembling sodium alginate into assembly membranes of rod-like cellulose nanocrystals with an achiral array. Wang X; Feng N; Shi Z; Zhou N; Lu J; Huang J; Gan L Carbohydr Polym; 2021 Jun; 262():117949. PubMed ID: 33838826 [TBL] [Abstract][Full Text] [Related]
9. Insights into thermal degradation kinetics and liquid crystalline behavior of cellulose nanocrystals from the waste of Cajanus cajan (pigeon pea). Singh S; Bhardwaj S; Meda RS; Verma C; Chhajed M; Ghosh K; Maji PK Int J Biol Macromol; 2023 Jul; 242(Pt 1):124507. PubMed ID: 37100324 [TBL] [Abstract][Full Text] [Related]
10. Fluorescent cellulose nanocrystals/waterborne polyurethane nanocomposites for anti-counterfeiting applications. Ye X; Wang S; Zhou P; Zhang D; Zhu P Phys Chem Chem Phys; 2023 Mar; 25(13):9492-9499. PubMed ID: 36938804 [TBL] [Abstract][Full Text] [Related]
11. Modulation of surface properties of cellulose nanocrystals through adsorption of tannic acid and alkyl cellulose derivatives. D'Acierno F; Capron I Carbohydr Polym; 2023 Nov; 319():121159. PubMed ID: 37567688 [TBL] [Abstract][Full Text] [Related]
12. Effect of the Interactions between Oppositely Charged Cellulose Nanocrystals (CNCs) and Chitin Nanocrystals (ChNCs) on the Enhanced Stability of Soybean Oil-in-Water Emulsions. Parajuli S; Hasan MJ; Ureña-Benavides EE Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234017 [TBL] [Abstract][Full Text] [Related]
14. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals. Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601 [TBL] [Abstract][Full Text] [Related]
15. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications. Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824 [TBL] [Abstract][Full Text] [Related]
16. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Khanjanzadeh H; Behrooz R; Bahramifar N; Gindl-Altmutter W; Bacher M; Edler M; Griesser T Int J Biol Macromol; 2018 Jan; 106():1288-1296. PubMed ID: 28855133 [TBL] [Abstract][Full Text] [Related]
17. In-situ preparation of hollow cellulose nanocrystals/zeolitic imidazolate framework hybrid microspheres derived from Pickering emulsion. Ma J; Hu J; Tang Y; Gu H; Jiang M; Zhang J J Colloid Interface Sci; 2020 Jul; 572():160-169. PubMed ID: 32240789 [TBL] [Abstract][Full Text] [Related]
18. Individually Dispersed Wood-Based Cellulose Nanocrystals. Chang H; Luo J; Bakhtiary Davijani AA; Chien AT; Wang PH; Liu HC; Kumar S ACS Appl Mater Interfaces; 2016 Mar; 8(9):5768-71. PubMed ID: 26901421 [TBL] [Abstract][Full Text] [Related]
19. Supramolecular Materials Chemistry in the MacLachlan Group. Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202306686. PubMed ID: 37255384 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of cellulose nanocrystals with high stability from okara by green solvent pretreatment assisted TEMPO oxidation. Tang L; Wang B; Bai S; Fan B; Zhang L; Wang F Carbohydr Polym; 2024 Jan; 324():121485. PubMed ID: 37985081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]