These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37985195)

  • 21. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys.
    Krauzlis RJ; Lisberger SG
    J Neurophysiol; 1994 Jul; 72(1):150-62. PubMed ID: 7965001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling peripheral vision for moving target search and detection.
    Yang JH; Huston J; Day M; Balogh I
    Aviat Space Environ Med; 2012 Jun; 83(6):585-93. PubMed ID: 22764613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating the velocity of briefly presented moving stimuli.
    Yakimoff N; Mitrani L; Bocheva N
    Acta Physiol Pharmacol Bulg; 1981; 7(3):72-9. PubMed ID: 7340401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction time in automated kinetic perimetry: effects of stimulus luminance, eccentricity, and movement direction.
    Schiefer U; Strasburger H; Becker ST; Vonthein R; Schiller J; Dietrich TJ; Hart W
    Vision Res; 2001 Jul; 41(16):2157-64. PubMed ID: 11403799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human vision favors centrifugal motion.
    Ball K; Sekuler R
    Perception; 1980; 9(3):317-25. PubMed ID: 7454512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two mechanisms for the detection of slow motion.
    Boulton JC
    J Opt Soc Am A; 1987 Aug; 4(8):1634-42. PubMed ID: 3625347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetrical time-to-contact error with two moving objects persists across different vertical separations.
    Bennett SJ; Uji M; Baurès R
    Acta Psychol (Amst); 2018 Apr; 185():146-154. PubMed ID: 29482088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Availability of attention affects time-to-contact estimation.
    Baurès R; Maquestiaux F; DeLucia PR; Defer A; Prigent E
    Exp Brain Res; 2018 Jul; 236(7):1971-1984. PubMed ID: 29713757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central-peripheral dichotomy: color-motion and luminance-motion binding show stronger top-down feedback in central vision.
    Bi K; Zhang Y; Zhang YY
    Atten Percept Psychophys; 2022 Apr; 84(3):861-877. PubMed ID: 35304697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
    Zheng R; Maraj BKV
    Exp Brain Res; 2018 Jul; 236(7):1953-1962. PubMed ID: 29704034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topographic and directional organization of visual motion inputs for the initiation of horizontal and vertical smooth-pursuit eye movements in monkeys.
    Lisberger SG; Pavelko TA
    J Neurophysiol; 1989 Jan; 61(1):173-85. PubMed ID: 2918342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motion perception at mesopic light levels: effects of physiological ageing and eccentricity.
    Sepulveda JA; Anderson AJ; Wood JM; McKendrick AM
    Ophthalmic Physiol Opt; 2021 Mar; 41(2):447-456. PubMed ID: 33486810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of target size and eccentricity on binocular summation of reaction time in kinetic perimetry.
    Wakayama A; Matsumoto C; Ohmure K; Inase M; Shimomura Y
    Vision Res; 2011 Jan; 51(1):174-8. PubMed ID: 21078335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
    Spering M; Schütz AC; Braun DI; Gegenfurtner KR
    J Neurophysiol; 2011 Apr; 105(4):1756-67. PubMed ID: 21289135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion perception in central field loss.
    Shanidze N; Verghese P
    J Vis; 2019 Dec; 19(14):20. PubMed ID: 31868895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study.
    Keshavarz B; Berti S
    Behav Brain Res; 2014 Feb; 259():131-6. PubMed ID: 24211538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of contrast on foveal and peripheral detection of coherent motion in moving random-dot patterns.
    van de Grind WA; Koenderink JJ; van Doorn AJ
    J Opt Soc Am A; 1987 Aug; 4(8):1643-52. PubMed ID: 3625348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18.
    Orban GA; Hoffmann KP; Duysens J
    J Neurophysiol; 1985 Oct; 54(4):1026-49. PubMed ID: 4067619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.