These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37985216)
1. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. Du X; Gao Z; He L J Sci Food Agric; 2024 Mar; 104(5):2630-2640. PubMed ID: 37985216 [TBL] [Abstract][Full Text] [Related]
2. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. Du X; Gao Z; Yang T; Qu Y; He L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122954. PubMed ID: 37270975 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. Yang T; Doherty J; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 Nov; 65(44):9744-9752. PubMed ID: 29067814 [TBL] [Abstract][Full Text] [Related]
4. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. He L; Chen T; Labuza TP Food Chem; 2014 Apr; 148():42-6. PubMed ID: 24262524 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping. Yang T; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 May; 65(17):3541-3550. PubMed ID: 28393527 [TBL] [Abstract][Full Text] [Related]
6. Real-Time and in Situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Yang T; Zhang Z; Zhao B; Hou R; Kinchla A; Clark JM; He L Anal Chem; 2016 May; 88(10):5243-50. PubMed ID: 27099952 [TBL] [Abstract][Full Text] [Related]
7. Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles. Song Y; Qiu H; Huang Y; Wang X; Lai K Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123189. PubMed ID: 37506455 [TBL] [Abstract][Full Text] [Related]
8. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B; Sun DW; Pu H; Wei Q Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854 [TBL] [Abstract][Full Text] [Related]
9. SPE-UPLC-MS/MS for Determination of 36 Monomers of Alkylphenol Ethoxylates in Tea. Lin Q; Qin Y; Sun H; Wang X; Yang M; Zhang X; Zhou L; Luo F Molecules; 2023 Apr; 28(7):. PubMed ID: 37049980 [TBL] [Abstract][Full Text] [Related]
10. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide]. Lin L; Wu RM; Liu MH; Wang XB; Yan LY Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):404-8. PubMed ID: 25970901 [TBL] [Abstract][Full Text] [Related]
11. Controllable assembly of high sticky and flexibility surface-enhanced Raman scattering substrate for on-site target pesticide residues detection. Bai F; Dong J; Wang T; Qu J; Zhang Z Food Chem; 2023 Mar; 405(Pt A):134794. PubMed ID: 36368104 [TBL] [Abstract][Full Text] [Related]
12. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Chen J; Huang M; Kong L; Lin M Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Fu G; Sun DW; Pu H; Wei Q Talanta; 2019 Apr; 195():841-849. PubMed ID: 30625626 [TBL] [Abstract][Full Text] [Related]
14. Dialdehyde starch-enclosed silver nanoparticles substrate with controlled-release "hotspots" for ultrasensitive SERS detection of thiabendazole. Zhao SS; He ZH; Liu X; Shen Y; Tan XC; Wang Q; Yan J; Zhu WW Food Chem; 2024 Mar; 436():137706. PubMed ID: 37844511 [TBL] [Abstract][Full Text] [Related]
15. Integrated surface-enhanced Raman spectroscopy and convolutional neural network for quantitative and qualitative analysis of pesticide residues on pericarp. Wang X; Jiang S; Liu Z; Sun X; Zhang Z; Quan X; Zhang T; Kong W; Yang X; Li Y Food Chem; 2024 May; 440():138214. PubMed ID: 38150903 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Different Home/Commercial Washing Strategies for Ten Typical Pesticide Residue Removal Effects in Kumquat, Spinach and Cucumber. Wu Y; An Q; Li D; Wu J; Pan C Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30736280 [TBL] [Abstract][Full Text] [Related]
17. Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Yang T; Doherty J; Guo H; Zhao B; Clark JM; Xing B; Hou R; He L Anal Chem; 2019 Feb; 91(3):2093-2099. PubMed ID: 30628431 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Penetration of Multiple Classes of Pesticides in Fresh Produce Using Surface-Enhanced Raman Scattering Mapping. Yang T; Zhao B; Hou R; Zhang Z; Kinchla AJ; Clark JM; He L J Food Sci; 2016 Nov; 81(11):T2891-T2901. PubMed ID: 27711977 [TBL] [Abstract][Full Text] [Related]
19. Paper-based SERS substrate and one-class classifier to monitor thiabendazole residual levels in extracts of mango peels. Teixeira CA; Poppi RJ Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117913. PubMed ID: 31855814 [TBL] [Abstract][Full Text] [Related]
20. Investigation of nonlinear relationship of surface enhanced Raman scattering signal for robust prediction of thiabendazole in apple. Li H; Mehedi Hassan M; Wang J; Wei W; Zou M; Ouyang Q; Chen Q Food Chem; 2021 Mar; 339():127843. PubMed ID: 32889134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]