These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37985704)

  • 1. Exploring the competitive dynamic enzyme allocation scheme through enzyme cost minimization.
    Qi S; Wang G; Li W; Zhou S
    ISME Commun; 2023 Nov; 3(1):121. PubMed ID: 37985704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil enzymes as indicators of soil function: A step toward greater realism in microbial ecological modeling.
    Wang G; Gao Q; Yang Y; Hobbie SE; Reich PB; Zhou J
    Glob Chang Biol; 2022 Mar; 28(5):1935-1950. PubMed ID: 34905647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes.
    Averill C
    Ecol Lett; 2014 Oct; 17(10):1202-10. PubMed ID: 25040202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving a Biogeochemical Model to Simulate Microbial-Mediated Carbon Dynamics in Agricultural Ecosystems.
    Deng J; Frolking S; Bajgain R; Cornell CR; Wagle P; Xiao X; Zhou J; Basara J; Steiner J; Li C
    J Adv Model Earth Syst; 2021 Nov; 13(11):e2021MS002752. PubMed ID: 35865275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of ozone depletion and climate change on biogeochemical cycles.
    Zepp RG; Callaghan TV; Erickson DJ
    Photochem Photobiol Sci; 2003 Jan; 2(1):51-61. PubMed ID: 12659539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying population and community ecology theory to advance understanding of belowground biogeochemistry.
    Buchkowski RW; Bradford MA; Grandy AS; Schmitz OJ; Wieder WR
    Ecol Lett; 2017 Feb; 20(2):231-245. PubMed ID: 28111899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial carbon use efficiency in different ecosystems: A meta-analysis based on a biogeochemical equilibrium model.
    He P; Zhang Y; Shen Q; Ling N; Nan Z
    Glob Chang Biol; 2023 Sep; 29(17):4758-4774. PubMed ID: 37431700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change.
    Garcia MO; Templer PH; Sorensen PO; Sanders-DeMott R; Groffman PM; Bhatnagar JM
    Front Microbiol; 2020; 11():616. PubMed ID: 32477275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil.
    Kaiser C; Koranda M; Kitzler B; Fuchslueger L; Schnecker J; Schweiger P; Rasche F; Zechmeister-Boltenstern S; Sessitsch A; Richter A
    New Phytol; 2010 Aug; 187(3):843-58. PubMed ID: 20553392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change.].
    Xu MP; Ren CJ; Zhang W; Chen ZX; Fu SY; Liu WC; Yang GH; Han XH
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2445-2454. PubMed ID: 30039684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of elevation, season and accelerated snowmelt on biogeochemical processes during isolated conifer needle litter decomposition.
    Leonard LT; Brodie EL; Williams KH; Sharp JO
    PeerJ; 2021; 9():e11926. PubMed ID: 34434657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.
    Wortel MT; Noor E; Ferris M; Bruggeman FJ; Liebermeister W
    PLoS Comput Biol; 2018 Feb; 14(2):e1006010. PubMed ID: 29451895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests.].
    Wu QQ; Wang CK
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2422-2432. PubMed ID: 30039682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the crucial role of soil microorganisms in carbon cycling: A review.
    Wu H; Cui H; Fu C; Li R; Qi F; Liu Z; Yang G; Xiao K; Qiao M
    Sci Total Environ; 2024 Jan; 909():168627. PubMed ID: 37977383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking stoichiometric homeostasis of microorganisms with soil phosphorus dynamics in wetlands subjected to microcosm warming.
    Wang H; Li H; Zhang Z; Muehlbauer JD; He Q; Xu X; Yue C; Jiang D
    PLoS One; 2014; 9(1):e85575. PubMed ID: 24475045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial dormancy improves development and experimental validation of ecosystem model.
    Wang G; Jagadamma S; Mayes MA; Schadt CW; Steinweg JM; Gu L; Post WM
    ISME J; 2015 Jan; 9(1):226-37. PubMed ID: 25012899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemical controls on nitrogen transformations in subtropical estuarine wetlands.
    Li X; Hou L; Liu M; Tong C
    Environ Pollut; 2020 Aug; 263(Pt A):114379. PubMed ID: 32203847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A trait-based approach for modelling microbial litter decomposition.
    Allison SD
    Ecol Lett; 2012 Sep; 15(9):1058-70. PubMed ID: 22642621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale.
    Gill AL; Finzi AC
    Ecol Lett; 2016 Dec; 19(12):1419-1428. PubMed ID: 27758027
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.