These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37985809)

  • 41. Improved multimer prediction using massive sampling with AlphaFold in CASP15.
    Wallner B
    Proteins; 2023 Dec; 91(12):1734-1746. PubMed ID: 37548092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AFTM: a database of transmembrane regions in the human proteome predicted by AlphaFold.
    Pei J; Cong Q
    Database (Oxford); 2023 Mar; 2023():. PubMed ID: 36917599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR hawk-eyed view of AlphaFold2 structures.
    Zweckstetter M
    Protein Sci; 2021 Nov; 30(11):2333-2337. PubMed ID: 34469019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.
    Ozden B; Kryshtafovych A; Karaca E
    Proteins; 2023 Dec; 91(12):1636-1657. PubMed ID: 37861057
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural validation and assessment of AlphaFold2 predictions for centrosomal and centriolar proteins and their complexes.
    van Breugel M; Rosa E Silva I; Andreeva A
    Commun Biol; 2022 Apr; 5(1):312. PubMed ID: 35383272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving Signal and Transit Peptide Predictions Using AlphaFold2-predicted Protein Structures.
    Sanaboyana VR; Elcock AH
    J Mol Biol; 2024 Jan; 436(2):168393. PubMed ID: 38065275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of AlphaFold2 Structures for Hit Identification across Multiple Scenarios.
    Gu S; Yang Y; Zhao Y; Qiu J; Wang X; Tong HHY; Liu L; Wan X; Liu H; Hou T; Kang Y
    J Chem Inf Model; 2024 May; 64(9):3630-3639. PubMed ID: 38630855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement of protein tertiary and quaternary structure predictions using the ReFOLD refinement method and the AlphaFold2 recycling process.
    Adiyaman R; Edmunds NS; Genc AG; Alharbi SMA; McGuffin LJ
    Bioinform Adv; 2023; 3(1):vbad078. PubMed ID: 37359722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. AlphaFold2 structures template ligand discovery.
    Lyu J; Kapolka N; Gumpper R; Alon A; Wang L; Jain MK; Barros-Álvarez X; Sakamoto K; Kim Y; DiBerto J; Kim K; Tummino TA; Huang S; Irwin JJ; Tarkhanova OO; Moroz Y; Skiniotis G; Kruse AC; Shoichet BK; Roth BL
    bioRxiv; 2024 Mar; ():. PubMed ID: 38187536
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ClusPro AbEMap web server for the prediction of antibody epitopes.
    Desta IT; Kotelnikov S; Jones G; Ghani U; Abyzov M; Kholodov Y; Standley DM; Beglov D; Vajda S; Kozakov D
    Nat Protoc; 2023 Jun; 18(6):1814-1840. PubMed ID: 37188806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deciphering Divergent Trypanosomatid Nuclear Complexes by Analyzing Interactomic Datasets with AlphaFold2 and Genetic Approaches.
    Rodriguez Araya E; Merli ML; Cribb P; de Souza VC; Serra E
    ACS Infect Dis; 2023 Jun; 9(6):1267-1282. PubMed ID: 37167453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device.
    Goulet A; Cambillau C
    Front Mol Biosci; 2022; 9():907452. PubMed ID: 35615740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An AlphaFold2 map of the 53BP1 pathway identifies a direct SHLD3-RIF1 interaction critical for shieldin activity.
    Sifri C; Hoeg L; Durocher D; Setiaputra D
    EMBO Rep; 2023 Aug; 24(8):e56834. PubMed ID: 37306046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AlphaFold illuminates half of the dark human proteins.
    Binder JL; Berendzen J; Stevens AO; He Y; Wang J; Dokholyan NV; Oprea TI
    Curr Opin Struct Biol; 2022 Jun; 74():102372. PubMed ID: 35439658
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
    Kozma D; Tusnády GE
    BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative analysis of membrane protein structure databases.
    Shimizu K; Cao W; Saad G; Shoji M; Terada T
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1077-1091. PubMed ID: 29331638
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly significant improvement of protein sequence alignments with AlphaFold2.
    Baltzis A; Mansouri L; Jin S; Langer BE; Erb I; Notredame C
    Bioinformatics; 2022 Nov; 38(22):5007-5011. PubMed ID: 36130276
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An agnostic analysis of the human AlphaFold2 proteome using local protein conformations.
    de Brevern AG
    Biochimie; 2023 Apr; 207():11-19. PubMed ID: 36417962
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AlphaFold2 has more to learn about protein energy landscapes.
    Chakravarty D; Schafer JW; Chen EA; Thole JR; Porter LL
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.