These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37985809)

  • 61. Combined prediction and design reveals the target recognition mechanism of an intrinsically disordered protein interaction domain.
    Hu X; Xu Y; Wang C; Liu Y; Zhang L; Zhang J; Wang W; Chen Q; Liu H
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305603120. PubMed ID: 37722056
    [TBL] [Abstract][Full Text] [Related]  

  • 62. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
    Kozma D; Tusnády GE
    BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059
    [TBL] [Abstract][Full Text] [Related]  

  • 63. AlphaFold illuminates half of the dark human proteins.
    Binder JL; Berendzen J; Stevens AO; He Y; Wang J; Dokholyan NV; Oprea TI
    Curr Opin Struct Biol; 2022 Jun; 74():102372. PubMed ID: 35439658
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative analysis of membrane protein structure databases.
    Shimizu K; Cao W; Saad G; Shoji M; Terada T
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1077-1091. PubMed ID: 29331638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. AlphaFold2 structures guide prospective ligand discovery.
    Lyu J; Kapolka N; Gumpper R; Alon A; Wang L; Jain MK; Barros-Álvarez X; Sakamoto K; Kim Y; DiBerto J; Kim K; Glenn IS; Tummino TA; Huang S; Irwin JJ; Tarkhanova OO; Moroz Y; Skiniotis G; Kruse AC; Shoichet BK; Roth BL
    Science; 2024 Jun; 384(6702):eadn6354. PubMed ID: 38753765
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An agnostic analysis of the human AlphaFold2 proteome using local protein conformations.
    de Brevern AG
    Biochimie; 2023 Apr; 207():11-19. PubMed ID: 36417962
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin.
    Almén MS; Nordström KJ; Fredriksson R; Schiöth HB
    BMC Biol; 2009 Aug; 7():50. PubMed ID: 19678920
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly significant improvement of protein sequence alignments with AlphaFold2.
    Baltzis A; Mansouri L; Jin S; Langer BE; Erb I; Notredame C
    Bioinformatics; 2022 Nov; 38(22):5007-5011. PubMed ID: 36130276
    [TBL] [Abstract][Full Text] [Related]  

  • 70. AlphaFold2 has more to learn about protein energy landscapes.
    Chakravarty D; Schafer JW; Chen EA; Thole JR; Porter LL
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168383
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties.
    Sala D; Hildebrand PW; Meiler J
    Front Mol Biosci; 2023; 10():1121962. PubMed ID: 36876042
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tertiary structure assessment at CASP15.
    Simpkin AJ; Mesdaghi S; Sánchez Rodríguez F; Elliott L; Murphy DL; Kryshtafovych A; Keegan RM; Rigden DJ
    Proteins; 2023 Dec; 91(12):1616-1635. PubMed ID: 37746927
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling.
    Raisinghani N; Alshahrani M; Gupta G; Tian H; Xiao S; Tao P; Verkhivker G
    bioRxiv; 2024 Feb; ():. PubMed ID: 38496487
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Family-wide analysis of integrin structures predicted by AlphaFold2.
    Zhang H; Zhu DS; Zhu J
    Comput Struct Biotechnol J; 2023; 21():4497-4507. PubMed ID: 37753178
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D-equivariant graph neural networks for protein model quality assessment.
    Chen C; Chen X; Morehead A; Wu T; Cheng J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637199
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A3DyDB: exploring structural aggregation propensities in the yeast proteome.
    Garcia-Pardo J; Badaczewska-Dawid AE; Pintado-Grima C; Iglesias V; Kuriata A; Kmiecik S; Ventura S
    Microb Cell Fact; 2023 Sep; 22(1):186. PubMed ID: 37716955
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structures of
    Willems A; Kalaw A; Ecer A; Kotwal A; Roepe LD; Roepe PD
    Biochemistry; 2023 Mar; 62(5):1093-1110. PubMed ID: 36800498
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Substrate Recognition Properties from an Intermediate Structural State of the UreA Transporter.
    Sanguinetti M; Silva Santos LH; Dourron J; Alamón C; Idiarte J; Amillis S; Pantano S; Ramón A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555682
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Before and after AlphaFold2: An overview of protein structure prediction.
    Bertoline LMF; Lima AN; Krieger JE; Teixeira SK
    Front Bioinform; 2023; 3():1120370. PubMed ID: 36926275
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.