These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37985809)
61. Combined prediction and design reveals the target recognition mechanism of an intrinsically disordered protein interaction domain. Hu X; Xu Y; Wang C; Liu Y; Zhang L; Zhang J; Wang W; Chen Q; Liu H Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305603120. PubMed ID: 37722056 [TBL] [Abstract][Full Text] [Related]
62. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool. Kozma D; Tusnády GE BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059 [TBL] [Abstract][Full Text] [Related]
63. AlphaFold illuminates half of the dark human proteins. Binder JL; Berendzen J; Stevens AO; He Y; Wang J; Dokholyan NV; Oprea TI Curr Opin Struct Biol; 2022 Jun; 74():102372. PubMed ID: 35439658 [TBL] [Abstract][Full Text] [Related]
64. Prediction of the human membrane proteome. Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080 [TBL] [Abstract][Full Text] [Related]
65. Comparative analysis of membrane protein structure databases. Shimizu K; Cao W; Saad G; Shoji M; Terada T Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1077-1091. PubMed ID: 29331638 [TBL] [Abstract][Full Text] [Related]
67. An agnostic analysis of the human AlphaFold2 proteome using local protein conformations. de Brevern AG Biochimie; 2023 Apr; 207():11-19. PubMed ID: 36417962 [TBL] [Abstract][Full Text] [Related]
68. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. Almén MS; Nordström KJ; Fredriksson R; Schiöth HB BMC Biol; 2009 Aug; 7():50. PubMed ID: 19678920 [TBL] [Abstract][Full Text] [Related]
69. Highly significant improvement of protein sequence alignments with AlphaFold2. Baltzis A; Mansouri L; Jin S; Langer BE; Erb I; Notredame C Bioinformatics; 2022 Nov; 38(22):5007-5011. PubMed ID: 36130276 [TBL] [Abstract][Full Text] [Related]
70. AlphaFold2 has more to learn about protein energy landscapes. Chakravarty D; Schafer JW; Chen EA; Thole JR; Porter LL bioRxiv; 2023 Dec; ():. PubMed ID: 38168383 [TBL] [Abstract][Full Text] [Related]
71. Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties. Sala D; Hildebrand PW; Meiler J Front Mol Biosci; 2023; 10():1121962. PubMed ID: 36876042 [TBL] [Abstract][Full Text] [Related]
73. Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling. Raisinghani N; Alshahrani M; Gupta G; Tian H; Xiao S; Tao P; Verkhivker G bioRxiv; 2024 Feb; ():. PubMed ID: 38496487 [TBL] [Abstract][Full Text] [Related]
78. Substrate Recognition Properties from an Intermediate Structural State of the UreA Transporter. Sanguinetti M; Silva Santos LH; Dourron J; Alamón C; Idiarte J; Amillis S; Pantano S; Ramón A Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555682 [TBL] [Abstract][Full Text] [Related]
79. Before and after AlphaFold2: An overview of protein structure prediction. Bertoline LMF; Lima AN; Krieger JE; Teixeira SK Front Bioinform; 2023; 3():1120370. PubMed ID: 36926275 [TBL] [Abstract][Full Text] [Related]