These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37985850)

  • 1. Identifying opportunities for late-stage C-H alkylation with high-throughput experimentation and in silico reaction screening.
    Nippa DF; Atz K; Müller AT; Wolfard J; Isert C; Binder M; Scheidegger O; Konrad DB; Grether U; Martin RE; Schneider G
    Commun Chem; 2023 Nov; 6(1):256. PubMed ID: 37985850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-Throughput Experimentation for Information-Rich Chemical Synthesis.
    Mahjour B; Shen Y; Cernak T
    Acc Chem Res; 2021 May; 54(10):2337-2346. PubMed ID: 33891404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Reaction Yields via Supervised Learning.
    Żurański AM; Martinez Alvarado JI; Shields BJ; Doyle AG
    Acc Chem Res; 2021 Apr; 54(8):1856-1865. PubMed ID: 33788552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling synthesis in fragment-based drug discovery by reactivity mapping: photoredox-mediated cross-dehydrogenative heteroarylation of cyclic amines.
    Grainger R; Heightman TD; Ley SV; Lima F; Johnson CN
    Chem Sci; 2019 Feb; 10(8):2264-2271. PubMed ID: 30881651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the chemical 'reactome' with high-throughput experimentation data.
    King-Smith E; Berritt S; Bernier L; Hou X; Klug-McLeod JL; Mustakis J; Sach NW; Tucker JW; Yang Q; Howard RM; Lee AA
    Nat Chem; 2024 Apr; 16(4):633-643. PubMed ID: 38168924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric deep learning-guided Suzuki reaction conditions assessment for applications in medicinal chemistry.
    Atz K; Nippa DF; Müller AT; Jost V; Anelli A; Reutlinger M; Kramer C; Martin RE; Grether U; Schneider G; Wuitschik G
    RSC Med Chem; 2024 Jul; 15(7):2310-2321. PubMed ID: 39026644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning.
    Nippa DF; Atz K; Hohler R; Müller AT; Marx A; Bartelmus C; Wuitschik G; Marzuoli I; Jost V; Wolfard J; Binder M; Stepan AF; Konrad DB; Grether U; Martin RE; Schneider G
    Nat Chem; 2024 Feb; 16(2):239-248. PubMed ID: 37996732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Decarboxylative C-2 Alkylation of Azoles through Minisci-Type Coupling.
    Rosadoni E; Bombonato E; Del Vecchio A; Guariento S; Ronchi P; Bellina F
    J Org Chem; 2023 Oct; 88(19):14236-14241. PubMed ID: 37729603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-Catalyzed Benzylic C-H Cross-Coupling Enabled by Redox Buffers: Expanding Synthetic Access to Three-Dimensional Chemical Space.
    Chen SJ; Krska SW; Stahl SS
    Acc Chem Res; 2023 Dec; 56(24):3604-3615. PubMed ID: 38051914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Minisci late stage functionalization with transfer learning.
    King-Smith E; Faber FA; Reilly U; Sinitskiy AV; Yang Q; Liu B; Hyek D; Lee AA
    Nat Commun; 2024 Jan; 15(1):426. PubMed ID: 38225239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced C(sp
    Wang C; Qi R; Wang R; Xu Z
    Acc Chem Res; 2023 Aug; 56(15):2110-2125. PubMed ID: 37467427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Merging Directed C-H Activations with High-Throughput Experimentation: Development of Iridium-Catalyzed C-H Aminations Applicable to Late-Stage Functionalization.
    Weis E; Johansson M; Korsgren P; Martín-Matute B; Johansson MJ
    JACS Au; 2022 Apr; 2(4):906-916. PubMed ID: 35557751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Throughput Experimentation Using DESI-MS to Guide Continuous-Flow Synthesis.
    Loren BP; Ewan HS; Avramova L; Ferreira CR; Sobreira TJP; Yammine K; Liao H; Cooks RG; Thompson DH
    Sci Rep; 2019 Oct; 9(1):14745. PubMed ID: 31611590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling synthesis in fragment-based drug discovery (FBDD): microscale high-throughput optimisation of the medicinal chemist's toolbox reactions.
    Townley C; Branduardi D; Chessari G; Cons BD; Griffiths-Jones C; Hall RJ; Johnson CN; Ochi Y; Whibley S; Grainger R
    RSC Med Chem; 2023 Dec; 14(12):2699-2713. PubMed ID: 38107176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines.
    Choi J; Laudadio G; Godineau E; Baran PS
    J Am Chem Soc; 2021 Aug; 143(31):11927-11933. PubMed ID: 34318659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning Approach to Model Interaction Effects: Development and Application to Alcohol Deoxyfluorination.
    Żurański AM; Gandhi SS; Doyle AG
    J Am Chem Soc; 2023 Apr; 145(14):7898-7909. PubMed ID: 36988153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-Catalyzed Enantioselective β-C(sp
    Lucas EL; Lam NYS; Zhuang Z; Chan HSS; Strassfeld DA; Yu JQ
    Acc Chem Res; 2022 Feb; 55(4):537-550. PubMed ID: 35076221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.