BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37986039)

  • 1. Transcriptomic monitoring of Douglas-fir heartwood formation.
    Delourme D; Brémaud L; Plazanet I; Pélissier P; Label P; Boizot N; Breton C; Durand S; Costa G
    BMC Genom Data; 2023 Nov; 24(1):69. PubMed ID: 37986039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir).
    Velasco VME; Ferreira A; Zaman S; Noordermeer D; Ensminger I; Wegrzyn JL
    G3 (Bethesda); 2023 Feb; 13(2):. PubMed ID: 36454025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial patterns of carbon isotopes in the xylem extractives and cellulose of Douglas-fir.
    Taylor AM; Brooks JR; Lachenbruch B; Morrell JJ
    Tree Physiol; 2007 Jun; 27(6):921-7. PubMed ID: 17331910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation.
    Howe GT; Yu J; Knaus B; Cronn R; Kolpak S; Dolan P; Lorenz WW; Dean JF
    BMC Genomics; 2013 Feb; 14():137. PubMed ID: 23445355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental Changes in Scots Pine Transcriptome during Heartwood Formation.
    Lim KJ; Paasela T; Harju A; Venäläinen M; Paulin L; Auvinen P; Kärkkäinen K; Teeri TH
    Plant Physiol; 2016 Nov; 172(3):1403-1417. PubMed ID: 27600814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings.
    Müller T; Ensminger I; Schmid KJ
    BMC Genomics; 2012 Nov; 13():673. PubMed ID: 23190494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Axiom SNP genotyping array for Douglas-fir.
    Howe GT; Jayawickrama K; Kolpak SE; Kling J; Trappe M; Hipkins V; Ye T; Guida S; Cronn R; Cushman SA; McEvoy S
    BMC Genomics; 2020 Jan; 21(1):9. PubMed ID: 31900111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.
    Cronn R; Dolan PC; Jogdeo S; Wegrzyn JL; Neale DB; St Clair JB; Denver DR
    BMC Genomics; 2017 Jul; 18(1):558. PubMed ID: 28738815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durability and Moisture Dynamics of Douglas-Fir Wood From Slovenia.
    Humar M; Vek V; Oven P; Lesar B; Kržišnik D; Keržič E; Hočevar M; Brus R
    Front Plant Sci; 2022; 13():860734. PubMed ID: 35422821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width.
    Pruyn ML; Gartner BL; Harmon ME
    J Exp Bot; 2005 Oct; 56(420):2637-49. PubMed ID: 16118257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform.
    Thistlethwaite FR; Ratcliffe B; Klápště J; Porth I; Chen C; Stoehr MU; El-Kassaby YA
    BMC Genomics; 2017 Dec; 18(1):930. PubMed ID: 29197325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transcriptomic resource for Douglas-fir seed development and analysis of transcription during late megagametophyte development.
    Little SA; Boyes IG; Donaleshen K; von Aderkas P; Ehlting J
    Plant Reprod; 2016 Dec; 29(4):273-286. PubMed ID: 27699505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal trends in
    Ohashi S; Kuroda K; Takano T; Suzuki Y; Fujiwara T; Abe H; Kagawa A; Sugiyama M; Kubojima Y; Zhang C; Yamamoto K
    J Environ Radioact; 2017 Nov; 178-179():335-342. PubMed ID: 28965024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Metabolomic and Transcriptomic Analysis Reveals the Mechanism of Specific Color Formation in
    Yang H; An W; Gu Y; Peng J; Jiang Y; Li J; Chen L; Zhu P; He F; Zhang F; Xiao J; Liu M; Wan X
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Organ-Specific Profiling of Douglas Fir (
    Teyssier C; Rogier O; Claverol S; Gautier F; Lelu-Walter MA; Duruflé H
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture-based identification to examine spatiotemporal patterns of fungal communities colonizing wood in ground contact.
    Torres-Andrade P; Morrell JJ; Cappellazzi J; Stone JK
    Mycologia; 2019; 111(5):703-718. PubMed ID: 31348726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees.
    Pruyn ML; Gartner BL; Harmon ME
    New Phytol; 2002 May; 154(2):359-372. PubMed ID: 33873424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon.
    Zhang R; Zhang Z; Yan C; Chen Z; Li X; Zeng B; Hu B
    BMC Plant Biol; 2024 Apr; 24(1):308. PubMed ID: 38644502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia.
    Yang J; Park S; Kamdem DP; Keathley DE; Retzel E; Paule C; Kapur V; Han KH
    Plant Mol Biol; 2003 Jul; 52(5):935-56. PubMed ID: 14558656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco.
    Chatthai M; Osusky M; Osuska L; Yevtushenko D; Misra S
    Planta; 2004 Nov; 220(1):118-28. PubMed ID: 15349778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.