These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Engineering aminoacyl-tRNA synthetases for use in synthetic biology. Krahn N; Tharp JM; Crnković A; Söll D Enzymes; 2020; 48():351-395. PubMed ID: 33837709 [TBL] [Abstract][Full Text] [Related]
5. Practical Approaches to Genetic Code Expansion with Aminoacyl-tRNA Synthetase/tRNA Pairs. Natter Perdiguero A; Deliz Liang A Chimia (Aarau); 2024 Feb; 78(1-2):22-31. PubMed ID: 38430060 [TBL] [Abstract][Full Text] [Related]
6. Directed Evolution of the Schwark DG; Schmitt MA; Fisk JD Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414 [TBL] [Abstract][Full Text] [Related]
7. Directed evolution of aminoacyl-tRNA synthetases through Furuhata Y; Rix G; Van Deventer JA; Liu CC bioRxiv; 2024 Sep; ():. PubMed ID: 39386665 [TBL] [Abstract][Full Text] [Related]
8. Protein Expression with Biosynthesized Noncanonical Amino Acids. Wang Y; Cai W; Han B; Liu T Methods Mol Biol; 2023; 2676():87-100. PubMed ID: 37277626 [TBL] [Abstract][Full Text] [Related]
9. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. Stieglitz JT; Van Deventer JA ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554 [TBL] [Abstract][Full Text] [Related]
10. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts. Wang L Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438 [TBL] [Abstract][Full Text] [Related]
11. A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast. Stieglitz JT; Kehoe HP; Lei M; Van Deventer JA ACS Synth Biol; 2018 Sep; 7(9):2256-2269. PubMed ID: 30139255 [TBL] [Abstract][Full Text] [Related]
12. "Not-so-popular" orthogonal pairs in genetic code expansion. Andrews J; Gan Q; Fan C Protein Sci; 2023 Feb; 32(2):e4559. PubMed ID: 36585833 [TBL] [Abstract][Full Text] [Related]
13. Enzyme redesign and genetic code expansion. Opuu V; Simonson T Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37879093 [TBL] [Abstract][Full Text] [Related]
17. The central role of tRNA in genetic code expansion. Reynolds NM; Vargas-Rodriguez O; Söll D; Crnković A Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3001-3008. PubMed ID: 28323071 [TBL] [Abstract][Full Text] [Related]
18. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Dunkelmann DL; Oehm SB; Beattie AT; Chin JW Nat Chem; 2021 Nov; 13(11):1110-1117. PubMed ID: 34426682 [TBL] [Abstract][Full Text] [Related]
19. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731 [TBL] [Abstract][Full Text] [Related]
20. Focused Engineering of Pyrrolysyl-tRNA Synthetase-Based Orthogonal Translation Systems for the Incorporation of Various Noncanonical Amino Acids. Koch NG; Budisa N Methods Mol Biol; 2023; 2676():3-19. PubMed ID: 37277621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]