These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37986483)

  • 1. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction?
    Jia W; Peng J; Zhang Y; Zhu J; Qiang X; Zhang R; Shi L
    Food Res Int; 2023 Dec; 174(Pt 1):113640. PubMed ID: 37986483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures.
    Timmons PB; Hewage CM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry.
    Samukhina YV; Matyushin DD; Grinevich OI; Buryak AK
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating a Multi-label Deep Learning Approach with Protein Information to Compare Bioactive Peptides in Brain and Plasma.
    Grønning AGB; Schéele C
    Methods Mol Biol; 2024; 2758():179-195. PubMed ID: 38549014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning.
    Broz M; Jukič M; Bren U
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
    Guo Z; Hou J; Cheng J
    Proteins; 2021 Feb; 89(2):207-217. PubMed ID: 32893403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep2Pep: A deep learning method in multi-label classification of bioactive peptide.
    Chen L; Hu Z; Rong Y; Lou B
    Comput Biol Chem; 2024 Apr; 109():108021. PubMed ID: 38308955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.
    Fan H; Yan W; Wang L; Liu J; Bin Y; Xia J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Prediction of Anti-hypertensive Peptides Based on Convolutional Neural Network and Gated Recurrent unit.
    Shi H; Zhang S
    Interdiscip Sci; 2022 Dec; 14(4):879-894. PubMed ID: 35474167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics.
    Zeng WF; Zhou XX; Willems S; Ammar C; Wahle M; Bludau I; Voytik E; Strauss MT; Mann M
    Nat Commun; 2022 Nov; 13(1):7238. PubMed ID: 36433986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of potential antidiabetic peptides using deep learning.
    Yue J; Xu J; Li T; Li Y; Chen Z; Liang S; Liu Z; Wang Y
    Comput Biol Med; 2024 Sep; 180():109013. PubMed ID: 39137670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.