BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37986676)

  • 1. Machine learning and single-cell transcriptome profiling reveal regulation of fibroblast activation through THBS2/TGFβ1/P-Smad2/3 signalling pathway in hypertrophic scar.
    Song B; Zhu Y; Zhao Y; Wang K; Peng Y; Chen L; Yu Z; Song B
    Int Wound J; 2023 Nov; 21(3):e14481. PubMed ID: 37986676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the contributions of cuproptosis in the development of hypertrophic scar using single-cell analysis and machine learning techniques.
    Song B; Liu W; Zhu Y; Peng Y; Cui Z; Gao B; Chen L; Yu Z; Song B
    Front Immunol; 2023; 14():1207522. PubMed ID: 37409114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-145-5p attenuates hypertrophic scar via reducing Smad2/Smad3 expression.
    Shen W; Wang Y; Wang D; Zhou H; Zhang H; Li L
    Biochem Biophys Res Commun; 2020 Jan; 521(4):1042-1048. PubMed ID: 31732152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-18a-5p represses scar fibroblast proliferation and extracellular matrix deposition through regulating Smad2 expression.
    Li T; Wu Y; Liu D; Zhuang L
    Exp Ther Med; 2021 Nov; 22(5):1318. PubMed ID: 34630672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BMS-202, a PD-1/PD-L1 inhibitor, decelerates the pro-fibrotic effects of fibroblasts derived from scar tissues via ERK and TGFβ1/Smad signaling pathways.
    Cai Y; Xiao M; Li X; Zhou S; Sun Y; Yu W; Zhao T
    Immun Inflamm Dis; 2022 Oct; 10(10):e693. PubMed ID: 36169254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism of transcriptional regulation of Meox1 by transforming growth factor β (1) and its effect on cell migration of adult human dermal fibroblasts].
    Wei ZY; Li HS; Zhou JY; Han C; Dong H; Wu YZ; He WF; Tian Y; Luo GX
    Zhonghua Shao Shang Za Zhi; 2020 Mar; 36(3):224-233. PubMed ID: 32241049
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of Pathological Phenotype of Hypertrophic Scar Fibroblasts Via Coculture with Adipose-Derived Stem Cells.
    Deng J; Shi Y; Gao Z; Zhang W; Wu X; Cao W; Liu W
    Tissue Eng Part A; 2018 Mar; 24(5-6):382-393. PubMed ID: 28562226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loureirin B inhibits fibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-β/Smad pathway.
    Bai X; He T; Liu J; Wang Y; Fan L; Tao K; Shi J; Tang C; Su L; Hu D
    Exp Dermatol; 2015 May; 24(5):355-60. PubMed ID: 25683490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell and Bulk Transcriptome Data Integration Reveals Dysfunctional Cell Types and Aberrantly Expressed Genes in Hypertrophic Scar.
    Zhang S; Zhang Y; Min P
    Front Genet; 2021; 12():806740. PubMed ID: 35047019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-205-5p regulates extracellular matrix production in hyperplastic scars by targeting Smad2.
    Qi J; Liu Y; Hu K; Zhang Y; Wu Y; Zhang X
    Exp Ther Med; 2019 Mar; 17(3):2284-2290. PubMed ID: 30867712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corilagin alleviates hypertrophic scars via inhibiting the transforming growth factor (TGF)-β/Smad signal pathway.
    Li Y; Yu Z; Zhao D; Han D
    Life Sci; 2021 Jul; 277():119483. PubMed ID: 33862115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shikonin reduces TGF-β1-induced collagen production and contraction in hypertrophic scar-derived human skin fibroblasts.
    Fan C; Dong Y; Xie Y; Su Y; Zhang X; Leavesley D; Upton Z
    Int J Mol Med; 2015 Oct; 36(4):985-91. PubMed ID: 26239419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exon skipping of TGFβRI affects signalling and ECM expression in hypertrophic scar-derived fibroblasts.
    Raktoe RS; Rietveld MH; Out-Luiting JJ; Kruithof-de Julio M; van Zuijlen PP; van Doorn R; Ghalbzouri AE
    Scars Burn Heal; 2020; 6():2059513120908857. PubMed ID: 32528734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts.
    Huang D; Liu Y; Huang Y; Xie Y; Shen K; Zhang D; Mou Y
    Connect Tissue Res; 2014; 55(5-6):391-6. PubMed ID: 25166894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway.
    Chen H; Xu K; Sun C; Gui S; Wu J; Wang S
    An Bras Dermatol; 2023; 98(1):26-35. PubMed ID: 36272879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellagic acid inhibits the formation of hypertrophic scars by suppressing TGF-β/Smad signaling pathway activity.
    Zhao ZJ; Wu DJ; Lv DL; Zhang BD; Chen L; Sun YQ
    Chem Biol Drug Des; 2023 Oct; 102(4):773-781. PubMed ID: 37386691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of sphingosine kinase 2 attenuates hypertrophic scar formation via upregulation of Smad7 in human hypertrophic scar fibroblasts.
    Zeng J; Jiang B; Xiao X; Zhang R
    Mol Med Rep; 2020 Sep; 22(3):2573-2582. PubMed ID: 32705254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the role of Hsa-miR-31-5p in hypertrophic scar formation and the mechanism.
    Wang X; Zhang Y; Jiang BH; Zhang Q; Zhou RP; Zhang L; Wang C
    Exp Cell Res; 2017 Dec; 361(2):201-209. PubMed ID: 29056521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Umbilical cord-derived mesenchymal stem cells exert anti-fibrotic action on hypertrophic scar-derived fibroblasts in co-culture by inhibiting the activation of the TGF β1/Smad3 pathway.
    Meng X; Gao X; Chen X; Yu J
    Exp Ther Med; 2021 Mar; 21(3):210. PubMed ID: 33574910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor c-Maf drives macrophages to promote hypertrophic scar formation.
    Yang L; Song Y; Wang T; Cui Z; Wu J; Shi Y; Yu Z; Song B
    J Cosmet Dermatol; 2024 Feb; 23(2):639-647. PubMed ID: 37710417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.