These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37987255)
1. A phenazine-based conjugated microporous polymer as a high performing cathode for aluminium-organic batteries. Grieco R; Luzanin O; Alvan D; Liras M; Dominko R; Patil N; Bitenc J; Marcilla R Faraday Discuss; 2024 Mar; 250(0):110-128. PubMed ID: 37987255 [TBL] [Abstract][Full Text] [Related]
2. Regulating the Double-Way Traffic of Cations and Anions in Ambipolar Polymer Cathodes for High-Performing Aluminum Dual-Ion Batteries. Luo LW; Zhang C; Ma W; Han C; Ai X; Chen Y; Xu Y; Ji X; Jiang JX Adv Mater; 2024 Sep; 36(39):e2406106. PubMed ID: 39108043 [TBL] [Abstract][Full Text] [Related]
3. Tuning the number of redox groups in the cathode toward high rate and long lifespan zinc-ion batteries. Shi Y; Xu Z; Wang P; Gao H; He W; Sun Y; Huang Y; Xu J; Cao J Chem Commun (Camb); 2024 Jan; 60(4):420-423. PubMed ID: 38086642 [TBL] [Abstract][Full Text] [Related]
4. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
5. Redox-Bipolar Polyimide Two-Dimensional Covalent Organic Framework Cathodes for Durable Aluminium Batteries. Liu Y; Lu Y; Hossain Khan A; Wang G; Wang Y; Morag A; Wang Z; Chen G; Huang S; Chandrasekhar N; Sabaghi D; Li D; Zhang P; Ma D; Brunner E; Yu M; Feng X Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202306091. PubMed ID: 37204021 [TBL] [Abstract][Full Text] [Related]
6. Rechargeable Aqueous Aluminum Organic Batteries. Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518 [TBL] [Abstract][Full Text] [Related]
7. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox-Active Sites for High-Performance Aluminium Organic Batteries. Peng X; Xie Y; Baktash A; Tang J; Lin T; Huang X; Hu Y; Jia Z; Searles DJ; Yamauchi Y; Wang L; Luo B Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203646. PubMed ID: 35332641 [TBL] [Abstract][Full Text] [Related]
8. Redox Donor-Acceptor Conjugated Microporous Polymers as Ultralong-Lived Organic Anodes for Rechargeable Air Batteries. Zhong L; Fang Z; Shu C; Mo C; Chen X; Yu D Angew Chem Int Ed Engl; 2021 Apr; 60(18):10164-10171. PubMed ID: 33580887 [TBL] [Abstract][Full Text] [Related]
9. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries. Weeraratne KS; Alzharani AA; El-Kaderi HM ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204 [TBL] [Abstract][Full Text] [Related]
10. Intermolecular Hydrogen Bonding Networks Stabilized Organic Supramolecular Cathode for Ultra-High Capacity and Ultra-Long Cycle Life Rechargeable Aluminum Batteries. Yang Z; Meng P; Jiang M; Zhang X; Zhang J; Fu C Angew Chem Int Ed Engl; 2024 Jul; 63(31):e202403424. PubMed ID: 38545934 [TBL] [Abstract][Full Text] [Related]
11. Metal-Organic Framework for Aluminum based Energy Storage Devices: Utilizing Redox Additives for Significant Performance Enhancement. De P; Priya S; Halder J; Srivastava AK; Chandra A ACS Appl Mater Interfaces; 2024 May; 16(20):26299-26315. PubMed ID: 38733338 [TBL] [Abstract][Full Text] [Related]
12. Effect of Synthesis Temperature on Performance of Phenazine-Based Cathode for Sodium Dual-Ion Batteries. Wang X; Li J; Liu Y; Li D; Ma M; Xie Y; You W; Zheng A; Xiong L ChemSusChem; 2024 Sep; ():e202401841. PubMed ID: 39317988 [TBL] [Abstract][Full Text] [Related]
13. Quinone-Enriched Conjugated Microporous Polymer as an Organic Cathode for Li-Ion Batteries. Ouyang Z; Tranca D; Zhao Y; Chen Z; Fu X; Zhu J; Zhai G; Ke C; Kymakis E; Zhuang X ACS Appl Mater Interfaces; 2021 Feb; 13(7):9064-9073. PubMed ID: 33583175 [TBL] [Abstract][Full Text] [Related]
14. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries. Wang Y; Qiao Z; Liu K; Yu L; Lv Y; Shi L; Zhao Y; Cao D; Wang Z; Wang S; Yuan S Adv Sci (Weinh); 2022 Dec; 9(36):e2205069. PubMed ID: 36354197 [TBL] [Abstract][Full Text] [Related]
15. An Efficient Rechargeable Aluminium-Amine Battery Working Under Quaternization Chemistry. Wang G; Dmitrieva E; Kohn B; Scheler U; Liu Y; Tkachova V; Yang L; Fu Y; Ma J; Zhang P; Wang F; Ge J; Feng X Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202116194. PubMed ID: 35029009 [TBL] [Abstract][Full Text] [Related]
16. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries. Luo Y; Liu J; Zhang L Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824 [TBL] [Abstract][Full Text] [Related]
17. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
18. A COF-Like N-Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for High-Energy Aqueous Zinc Dual-Ion Batteries. Zhang H; Zhong L; Xie J; Yang F; Liu X; Lu X Adv Mater; 2021 Aug; 33(34):e2101857. PubMed ID: 34259360 [TBL] [Abstract][Full Text] [Related]
19. A Carbonyl and Azo-Based Polymer Cathode for Low-Temperature Na-Ion Batteries. Kim EY; Mohammadiroudbari M; Chen F; Yang Z; Luo C ACS Nano; 2024 Feb; 18(5):4159-4169. PubMed ID: 38264981 [TBL] [Abstract][Full Text] [Related]
20. Interfacial Designing of MnO Zhao Y; Zhou R; Song Z; Zhang X; Zhang T; Zhou A; Wu F; Chen R; Li L Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202212231. PubMed ID: 36239266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]