These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37987255)
41. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage. Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323 [TBL] [Abstract][Full Text] [Related]
42. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
43. Lithiophilic Dibenzamide Linkages to Impart Lithium Storage Capacity in Porous Polybenzamides. Karak S; Singh H; Biswas A; Paul S; Manna S; Nishiyama Y; Pathak B; Banerjee A; Banerjee R J Am Chem Soc; 2024 Jul; 146(29):20183-20192. PubMed ID: 39002137 [TBL] [Abstract][Full Text] [Related]
44. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
45. Three-dimensional ordered macroporous ZIF-8 nanoparticle-derived nitrogen-doped hierarchical porous carbons for high-performance lithium-sulfur batteries. Ji X; Li Q; Yu H; Hu X; Luo Y; Li B RSC Adv; 2020 Nov; 10(69):41983-41992. PubMed ID: 35516741 [TBL] [Abstract][Full Text] [Related]
46. Hybrid Nano-Phase Ion/Electron Dual Pathways of Nickel/Cobalt-Boride Cathodes Boosting Intercalation Kinetics for Alkaline Batteries. Li J; Liu X; Zhao H; Zhang Q; Du B; Lu L; Liu N; Yang Y; Zhao N; Pang X; Yu X; Li X; Li X ACS Appl Mater Interfaces; 2023 Jan; 15(2):2843-2851. PubMed ID: 36594711 [TBL] [Abstract][Full Text] [Related]
47. An ultrafast rechargeable aluminium-ion battery. Lin MC; Gong M; Lu B; Wu Y; Wang DY; Guan M; Angell M; Chen C; Yang J; Hwang BJ; Dai H Nature; 2015 Apr; 520(7547):325-8. PubMed ID: 25849777 [TBL] [Abstract][Full Text] [Related]
48. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries. Jiang B; Huang T; Yang P; Xi X; Su Y; Liu R; Wu D J Colloid Interface Sci; 2021 Sep; 598():36-44. PubMed ID: 33892442 [TBL] [Abstract][Full Text] [Related]
49. Anthraquinone-Quinizarin Copolymer as a Promising Electrode Material for High-Performance Lithium and Potassium Batteries. Shchurik EV; Kraevaya OA; Vasil'ev SG; Zhidkov IS; Kurmaev EZ; Shestakov AF; Troshin PA Molecules; 2023 Jul; 28(14):. PubMed ID: 37513224 [TBL] [Abstract][Full Text] [Related]
50. Low-Cost Al-Doped Layered Cathodes with Improved Electrochemical Performance for Rechargeable Sodium-Ion Batteries. Feng YH; Cheng Z; Xu CL; Yu L; Si D; Yuan B; Liu M; Zhao B; Wang PF; Han X ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549057 [TBL] [Abstract][Full Text] [Related]
51. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage. Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857 [TBL] [Abstract][Full Text] [Related]
52. Unveiling Phenoxazine's Unique Reversible Two-Electron Transfer Process and Stable Redox Intermediates for High-Performance Aqueous Zinc-ion Batteries. Ning J; Zhang X; Xie D; He Q; Hu J; Tang J; Li R; Meng H; Yao KX Angew Chem Int Ed Engl; 2024 May; 63(19):e202319796. PubMed ID: 38451050 [TBL] [Abstract][Full Text] [Related]
53. Ferroelectric-Enhanced cathode kinetics toward High-Performance aqueous Zinc-Ion batteries. Li Y; Cui X; Yan J; Zhang Y; Xie E; Fu J J Colloid Interface Sci; 2023 Nov; 650(Pt B):1605-1611. PubMed ID: 37490837 [TBL] [Abstract][Full Text] [Related]
54. Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li-S batteries. Wu P; Chen LH; Xiao SS; Yu S; Wang Z; Li Y; Su BL Nanoscale; 2018 Jul; 10(25):11861-11868. PubMed ID: 29897083 [TBL] [Abstract][Full Text] [Related]
55. Anionic Se-Substitution toward High-Performance CuS Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703 [TBL] [Abstract][Full Text] [Related]
56. Long Cycle-Life Ca Batteries with Poly(anthraquinonylsulfide) Cathodes and Ca-Sn Alloy Anodes. Bier D; Li Z; Klyatskaya S; Sbei N; Roy A; Riedel S; Fichtner M; Ruben M; Zhao-Karger Z ChemSusChem; 2023 Nov; 16(21):e202300932. PubMed ID: 37526569 [TBL] [Abstract][Full Text] [Related]
57. Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li-S Batteries. Yi Y; Huang W; Tian X; Fang B; Wu Z; Zheng S; Li M; Ma H ACS Appl Mater Interfaces; 2021 Dec; 13(50):59983-59992. PubMed ID: 34889090 [TBL] [Abstract][Full Text] [Related]
58. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry. Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954 [TBL] [Abstract][Full Text] [Related]
59. Heterostructure Fe Long Z; Shi C; Wu C; Yuan L; Qiao H; Wang K Nanoscale; 2022 Feb; 14(5):1906-1920. PubMed ID: 35045148 [TBL] [Abstract][Full Text] [Related]
60. Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries. Kim HJ; Kim Y; Shim J; Jung KH; Jung MS; Kim H; Lee JC; Lee KT ACS Appl Mater Interfaces; 2018 Jan; 10(4):3479-3486. PubMed ID: 29298374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]