BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37987337)

  • 1. Vestibular Testing-New Physiological Results for the Optimization of Clinical VEMP Stimuli.
    Pastras CJ; Curthoys IS
    Audiol Res; 2023 Nov; 13(6):910-928. PubMed ID: 37987337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
    Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ
    J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and Differences Between Vestibular and Cochlear Systems - A Review of Clinical and Physiological Evidence.
    Curthoys IS; Grant JW; Pastras CJ; Fröhlich L; Brown DJ
    Front Neurosci; 2021; 15():695179. PubMed ID: 34456671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS).
    Curthoys IS; Vulovic V; Burgess AM; Sokolic L; Goonetilleke SC
    Hear Res; 2016 Jan; 331():131-43. PubMed ID: 26626360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence.
    Curthoys IS
    Exp Brain Res; 2017 Apr; 235(4):957-972. PubMed ID: 28130556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function.
    Curthoys IS; MacDougall HG; Vidal PP; de Waele C
    Front Neurol; 2017; 8():117. PubMed ID: 28424655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.
    Rodriguez AI; Thomas MLA; Janky KL
    Ear Hear; 2019; 40(1):192-203. PubMed ID: 29870520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration.
    Curthoys IS; Burgess AM; Goonetilleke SC
    Hear Res; 2019 Mar; 373():59-70. PubMed ID: 30599427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using macular velocity measurements to relate parameters of bone conduction to vestibular compound action potential responses.
    Pastras CJ; Curthoys IS; Rabbitt RD; Brown DJ
    Sci Rep; 2023 Jun; 13(1):10204. PubMed ID: 37353559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing.
    Curthoys IS; Grant JW; Pastras CJ; Brown DJ; Burgess AM; Brichta AM; Lim R
    J Neurophysiol; 2019 Jul; 122(1):259-276. PubMed ID: 31042414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for mechanical activation and compound action potential generation by the utricle in response to sound and vibration.
    Pastras CJ; Gholami N; Jennings S; Zhu H; Zhou W; Brown DJ; Curthoys IS; Rabbitt RD
    Front Neurol; 2023; 14():1109506. PubMed ID: 37051057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of High Sound Exposure During Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children and Young Adults.
    Rodriguez AI; Thomas MLA; Fitzpatrick D; Janky KL
    Ear Hear; 2018; 39(2):269-277. PubMed ID: 29466264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig.
    Curthoys IS; Kim J; McPhedran SK; Camp AJ
    Exp Brain Res; 2006 Nov; 175(2):256-67. PubMed ID: 16761136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Anatomical and Physiological Basis of Clinical Tests of Otolith Function. A Tribute to Yoshio Uchino.
    Curthoys IS
    Front Neurol; 2020; 11():566895. PubMed ID: 33193004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efferent synaptic transmission at the vestibular type II hair cell synapse.
    Yu Z; McIntosh JM; Sadeghi SG; Glowatzki E
    J Neurophysiol; 2020 Aug; 124(2):360-374. PubMed ID: 32609559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of short tone burst-evoked and click-evoked vestibular myogenic potentials in healthy individuals.
    Wu HJ; Shiao AS; Yang YL; Lee GS
    J Chin Med Assoc; 2007 Apr; 70(4):159-63. PubMed ID: 17475597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli.
    Curthoys IS
    Clin Neurophysiol; 2010 Feb; 121(2):132-44. PubMed ID: 19897412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Dual Recordings From Vestibular Hair Cells and Their Calyx Afferents Demonstrate Multiple Modes of Transmission at These Specialized Endings.
    Contini D; Holstein GR; Art JJ
    Front Neurol; 2022; 13():891536. PubMed ID: 35899268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.