BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37987346)

  • 1. Dedicated Cone-Beam Breast CT: Reproducibility of Volumetric Glandular Fraction with Advanced Image Reconstruction Methods.
    Vedantham S; Tseng HW; Fu Z; Chow HS
    Tomography; 2023 Nov; 9(6):2039-2051. PubMed ID: 37987346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cone-beam breast CT using an offset detector: effect of detector offset and image reconstruction algorithm.
    Tseng HW; Karellas A; Vedantham S
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35316793
    [No Abstract]   [Full Text] [Related]  

  • 3. Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts.
    Tseng HW; Vedantham S; Karellas A
    Phys Med; 2020 May; 73():117-124. PubMed ID: 32361156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dedicated breast CT: fibroglandular volume measurements in a diagnostic population.
    Vedantham S; Shi L; Karellas A; O'Connell AM
    Med Phys; 2012 Dec; 39(12):7317-28. PubMed ID: 23231281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human and model observer performance for lesion detection in breast cone beam CT images with the FDK reconstruction.
    Han M; Kim B; Baek J
    PLoS One; 2018; 13(3):e0194408. PubMed ID: 29543868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative reconstruction for image enhancement and dose reduction in diagnostic cone beam CT imaging.
    Matenine D; Schmittbuhl M; Bedwani S; Després P; de Guise JA
    J Xray Sci Technol; 2019; 27(5):805-819. PubMed ID: 31450539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dedicated cone-beam breast CT using laterally-shifted detector geometry: Quantitative analysis of feasibility for clinical translation.
    Vedantham S; Tseng HW; Konate S; Shi L; Karellas A
    J Xray Sci Technol; 2020; 28(3):405-426. PubMed ID: 32333575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
    Mao W; Liu C; Gardner SJ; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Wen NW; Movsas B; Chetty IJ
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818823054. PubMed ID: 30803367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A residual dense network assisted sparse view reconstruction for breast computed tomography.
    Fu Z; Tseng HW; Vedantham S; Karellas A; Bilgin A
    Sci Rep; 2020 Dec; 10(1):21111. PubMed ID: 33273541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a prototype rapid kilovoltage x-ray image guidance system designed for a ring shape radiation therapy unit.
    Cai B; Laugeman E; Mazur TR; Park JC; Henke LE; Kim H; Hugo GD; Mutic S; Li H
    Med Phys; 2019 Mar; 46(3):1355-1370. PubMed ID: 30675902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sparse-view Cone-beam Breast CT Reconstruction via cGAN Constrained by Image Edges].
    Yang Y; Fang C; Zhu L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Mar; 46(2):119-125. PubMed ID: 35411734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information.
    Lee H; Xing L; Lee R; Fahimian BP
    Med Phys; 2012 May; 39(5):2386-95. PubMed ID: 22559608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.
    Fahimian BP; Zhao Y; Huang Z; Fung R; Mao Y; Zhu C; Khatonabadi M; DeMarco JJ; Osher SJ; McNitt-Gray MF; Miao J
    Med Phys; 2013 Mar; 40(3):031914. PubMed ID: 23464329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Updated breast CT dose coefficients (DgN
    Hernandez AM; Becker AE; Boone JM
    Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone Beam Breast CT noise reduction using 3D adaptive Gaussian filtering.
    Zhang X; Ning R; Yang D
    J Xray Sci Technol; 2009; 17(4):319-33. PubMed ID: 19923688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data-efficient method for local noise power spectrum (NPS) estimation in FDK-reconstructed 3D cone-beam CT.
    Zeng R; Torkaman M; Ning H; Zhuge Y; Miller R; Myers KJ
    Med Phys; 2019 Apr; 46(4):1634-1647. PubMed ID: 30723944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.