BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37987374)

  • 1. γ-Glutamylation of Isopropylamine by Fermentation.
    Benninghaus L; Zagami L; Tassini G; Meyer F; Wendisch VF
    Chembiochem; 2024 Jan; 25(2):e202300608. PubMed ID: 37987374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of isopropylamine to L-alaninol by Pseudomonas sp. strain KIE171 involves N-glutamylated intermediates.
    de Azevedo Wäsch SI; van der Ploeg JR; Maire T; Lebreton A; Kiener A; Leisinger T
    Appl Environ Microbiol; 2002 May; 68(5):2368-75. PubMed ID: 11976110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Engineering of
    Benninghaus L; Walter T; Mindt M; Risse JM; Wendisch VF
    J Agric Food Chem; 2021 Sep; 69(34):9849-9858. PubMed ID: 34465093
    [No Abstract]   [Full Text] [Related]  

  • 4. Fermentative Production of
    Mindt M; Walter T; Risse JM; Wendisch VF
    Front Bioeng Biotechnol; 2018; 6():159. PubMed ID: 30474025
    [No Abstract]   [Full Text] [Related]  

  • 5. Establishment of synthetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: Design, construction, and application to production of γ-glutamylisopropylamide and l-theanine.
    Benninghaus L; Schwardmann LS; Jilg T; Wendisch VF
    Microb Biotechnol; 2024 Jan; 17(1):e14400. PubMed ID: 38206115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient fermentative production of L-theanine by Corynebacterium glutamicum.
    Ma H; Fan X; Cai N; Zhang D; Zhao G; Wang T; Su R; Yuan M; Ma Q; Zhang C; Xu Q; Xie X; Chen N; Li Y
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):119-130. PubMed ID: 31776607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining protein and metabolic engineering strategies for high-level production of L-theanine in Corynebacterium glutamicum.
    Yang T; Zhang D; Cai M; Zhang H; Pan X; You J; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2024 Feb; 394():130200. PubMed ID: 38103752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of p-amino-L-phenylalanine (L-PAPA) from glycerol by metabolic grafting of Escherichia coli.
    Mohammadi Nargesi B; Trachtmann N; Sprenger GA; Youn JW
    Microb Cell Fact; 2018 Sep; 17(1):149. PubMed ID: 30241531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway engineering of
    Fan X; Zhang T; Ji Y; Li J; Long K; Yuan Y; Li Y; Xu Q; Chen N; Xie X
    Metab Eng Commun; 2020 Dec; 11():e00151. PubMed ID: 33251110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions.
    Park SH; Sohn YJ; Park SJ; Choi JI
    Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol.
    Zhu Y; Du S; Yan Y; Pan F; Wang R; Li S; Xu H; Luo Z
    Bioresour Technol; 2022 Sep; 359():127382. PubMed ID: 35644456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli.
    Kim JW; Ko YS; Chae TU; Lee SY
    Biotechnol Bioeng; 2020 Jul; 117(7):2139-2152. PubMed ID: 32227471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Biosynthesis of Protocatechuic Acid via Recombinant
    Li J; Fu J; Yue C; Shang Y; Ye BC
    J Agric Food Chem; 2023 Jul; 71(27):10375-10382. PubMed ID: 37365996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Yield Production of Lycopene from Corn Steep Liquor and Glycerol Using the Metabolically Engineered
    Kang CK; Jeong SW; Yang JE; Choi YJ
    J Agric Food Chem; 2020 May; 68(18):5147-5153. PubMed ID: 32275417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.