These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 37987498)

  • 21. Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators.
    He F; You X; Gong H; Yang Y; Bai T; Wang W; Guo W; Liu X; Ye M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6442-6450. PubMed ID: 31935061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing.
    Wang Z; Wei H; Huang Y; Wei Y; Chen J
    Chem Soc Rev; 2023 May; 52(9):2992-3034. PubMed ID: 37017633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors.
    Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H
    J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications.
    Su G; Yin S; Guo Y; Zhao F; Guo Q; Zhang X; Zhou T; Yu G
    Mater Horiz; 2021 Jun; 8(6):1795-1804. PubMed ID: 34846508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulus-tunable multifunctional hydrogel ink with nanofillers for 3D-Printed soft electronics.
    Kang M; Park J; Kim SA; Kim TY; Kim JY; Kim DW; Park K; Seo J
    Biosens Bioelectron; 2024 Jul; 255():116257. PubMed ID: 38574560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection.
    Shen Y; Wang Z; Wang Y; Meng Z; Zhao Z
    Carbohydr Polym; 2021 Nov; 274():118642. PubMed ID: 34702463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Considerations for hydrogel applications to neural bioelectronics.
    Goding J; Vallejo-Giraldo C; Syed O; Green R
    J Mater Chem B; 2019 Mar; 7(10):1625-1636. PubMed ID: 32254905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soft Bioelectronics Based on Nanomaterials.
    Cho KW; Sunwoo SH; Hong YJ; Koo JH; Kim JH; Baik S; Hyeon T; Kim DH
    Chem Rev; 2022 Mar; 122(5):5068-5143. PubMed ID: 34962131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices.
    Kim J; Jeerapan I; Sempionatto JR; Barfidokht A; Mishra RK; Campbell AS; Hubble LJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2820-2828. PubMed ID: 30398344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications.
    Panwar V; Babu A; Sharma A; Thomas J; Chopra V; Malik P; Rajput S; Mittal M; Guha R; Chattopadhyay N; Mandal D; Ghosh D
    J Mater Chem B; 2021 Aug; 9(31):6260-6270. PubMed ID: 34338263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in flexible hydrogel sensors: Enhancing data processing and machine learning for intelligent perception.
    Boateng D; Li X; Zhu Y; Zhang H; Wu M; Liu J; Kang Y; Zeng H; Han L
    Biosens Bioelectron; 2024 Oct; 261():116499. PubMed ID: 38896981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mussel-inspired hydrogels: from design principles to promising applications.
    Zhang C; Wu B; Zhou Y; Zhou F; Liu W; Wang Z
    Chem Soc Rev; 2020 Jun; 49(11):3605-3637. PubMed ID: 32393930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress in wearable acoustical sensors for diagnostic applications.
    Li Y; Li Y; Zhang R; Li S; Liu Z; Zhang J; Fu Y
    Biosens Bioelectron; 2023 Oct; 237():115509. PubMed ID: 37423066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastretchable and Wireless Bioelectronics Based on All-Hydrogel Microfluidics.
    Liu Y; Yang T; Zhang Y; Qu G; Wei S; Liu Z; Kong T
    Adv Mater; 2019 Sep; 31(39):e1902783. PubMed ID: 31418928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors.
    Lv R; Bei Z; Huang Y; Chen Y; Zheng Z; You Q; Zhu C; Cao Y
    Macromol Rapid Commun; 2020 Jan; 41(2):e1900450. PubMed ID: 31778252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conductive Peptide-Based MXene Hydrogel as a Piezoresistive Sensor.
    Cohen-Gerassi D; Messer O; Finkelstein-Zuta G; Aviv M; Favelukis B; Shacham-Diamand Y; Sokol M; Adler-Abramovich L
    Adv Healthc Mater; 2024 Aug; 13(20):e2303632. PubMed ID: 38536070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Healing Materials for Bioelectronic Devices.
    Liu C; Kelley SO; Wang Z
    Adv Mater; 2024 Aug; 36(35):e2401219. PubMed ID: 38844826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.