These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37987748)

  • 1. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation.
    Anyika T; Hong I; Ndukaife JC
    Nano Lett; 2023 Dec; 23(24):11416-11423. PubMed ID: 37987748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed nanoscale optical trapping with plasmonic double nanohole aperture.
    Anyika T; Hong C; Ndukaife JC
    Nanoscale; 2023 Jun; 15(22):9710-9717. PubMed ID: 37132641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable trapping of single nanosized extracellular vesicles using plasmonics.
    Hong C; Ndukaife JC
    Nat Commun; 2023 Aug; 14(1):4801. PubMed ID: 37558710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles.
    Hong I; Hong C; Tutanov OS; Massick C; Castleberry M; Zhang Q; Jeppesen DK; Higginbotham JN; Franklin JL; Vickers K; Coffey RJ; Ndukaife JC
    Nano Lett; 2023 Aug; 23(16):7500-7507. PubMed ID: 37552655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic tweezers: for nanoscale optical trapping and beyond.
    Zhang Y; Min C; Dou X; Wang X; Urbach HP; Somekh MG; Yuan X
    Light Sci Appl; 2021 Mar; 10(1):59. PubMed ID: 33731693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures.
    Kotnala A; Ding H; Zheng Y
    ACS Photonics; 2021 Jun; 8(6):1673-1682. PubMed ID: 35445142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow.
    Kotnala A; Kollipara PS; Li J; Zheng Y
    Nano Lett; 2020 Jan; 20(1):768-779. PubMed ID: 31834809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Trapping and Release of Nanoparticles in a Monitoring Environment.
    Kim JD; Lee YG
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.