These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37987777)

  • 1. Interplay of Drop Shedding Mechanisms on High Wettability Contrast Biphilic Stripe-Patterned Surfaces.
    Tran H; He Z; Pirdavari P; Pack MY
    Langmuir; 2023 Dec; 39(48):17551-17559. PubMed ID: 37987777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing dropwise condensation through bioinspired wettability patterning.
    Ghosh A; Beaini S; Zhang BJ; Ganguly R; Megaridis CM
    Langmuir; 2014 Nov; 30(43):13103-15. PubMed ID: 25295388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Engineered Wettability on the Efficiency of Dew Collection.
    Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condensation of Humid Air on Superhydrophobic Surfaces: Effect of Nanocoatings on a Hierarchical Interface.
    Thomas TM; Sinha Mahapatra P
    Langmuir; 2021 Nov; 37(44):12767-12780. PubMed ID: 34714651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Superhydrophobic Grooves Drive Single-Droplet Jumping.
    Chu F; Yan X; Miljkovic N
    Langmuir; 2022 Apr; 38(14):4452-4460. PubMed ID: 35348343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving heat and mass transfer rates through continuous drop-wise condensation.
    Alshehri A; Rothstein JP; Kavehpour HP
    Sci Rep; 2021 Oct; 11(1):19636. PubMed ID: 34608187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces.
    Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK
    Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-layer graphene on nickel enabled sustainable dropwise condensation.
    Chang W; Peng B; Egab K; Zhang Y; Cheng Y; Li X; Ma X; Li C
    Sci Bull (Beijing); 2021 Sep; 66(18):1877-1884. PubMed ID: 36654397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces.
    Han T; Choi Y; Kwon JT; Kim MH; Jo H
    Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation of Dropwise Condensation Shedding by Shearing Airflow in Microgravity Using Different Surface Coatings.
    Shakeri Bonab M; Minetti C; Iorio CS; Zhao D; Liu QS; Ou J; Kempers R; Amirfazli A
    Langmuir; 2023 Jan; 39(1):64-74. PubMed ID: 36575153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability Patterns.
    Pelizzari M; McHale G; Armstrong S; Zhao H; Ledesma-Aguilar R; Wells GG; Kusumaatmaja H
    Langmuir; 2023 Nov; 39(44):15676-15689. PubMed ID: 37874819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence.
    Guo L; Tang GH; Kumar S
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26555-26565. PubMed ID: 32419445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.
    Elsharkawy M; Schutzius TM; Megaridis CM
    Lab Chip; 2014 Mar; 14(6):1168-75. PubMed ID: 24481036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.