These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37987804)

  • 1. Enzymatic vitamin A
    Gerhards J; Volkov LI; Corbo JC; Malan D; Sasse P
    Pflugers Arch; 2023 Dec; 475(12):1409-1419. PubMed ID: 37987804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of One Double Bond-Inserted Retinal Analogs and Their Binding Experiments with Opsins: Preparation of Novel Red-Shifted Channelrhodopsin Variants.
    Okitsu T; Yamano Y; Shen YC; Sasaki T; Kobayashi Y; Morisawa S; Yamashita T; Imamoto Y; Shichida Y; Wada A
    Chem Pharm Bull (Tokyo); 2020; 68(3):265-272. PubMed ID: 32115534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2.
    Enright JM; Toomey MB; Sato SY; Temple SE; Allen JR; Fujiwara R; Kramlinger VM; Nagy LD; Johnson KM; Xiao Y; How MJ; Johnson SL; Roberts NW; Kefalov VJ; Guengerich FP; Corbo JC
    Curr Biol; 2015 Dec; 25(23):3048-57. PubMed ID: 26549260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
    Lin JY; Knutsen PM; Muller A; Kleinfeld D; Tsien RY
    Nat Neurosci; 2013 Oct; 16(10):1499-508. PubMed ID: 23995068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cambrian origin of the CYP27C1-mediated vitamin A
    Morshedian A; Toomey MB; Pollock GE; Frederiksen R; Enright JM; McCormick SD; Cornwall MC; Fain GL; Corbo JC
    R Soc Open Sci; 2017 Jul; 4(7):170362. PubMed ID: 28791166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of opsins and chromophores to cone pigment variation across populations of Lake Victoria cichlids.
    Wilwert E; Etienne RS; van de Zande L; Maan ME
    J Fish Biol; 2022 Aug; 101(2):365-377. PubMed ID: 34860424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin A
    Corbo JC
    Dev Biol; 2021 Jul; 475():145-155. PubMed ID: 33684435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Spudich JL
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22833-22840. PubMed ID: 32873643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal.
    Sineshchekov OA; Govorunova EG; Wang J; Spudich JL
    Biochemistry; 2012 Jun; 51(22):4499-506. PubMed ID: 22577956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drugs of abuse on channelrhodopsin-2 function.
    Gioia DA; Xu M; Wayman WN; Woodward JJ
    Neuropharmacology; 2018 Jun; 135():316-327. PubMed ID: 29580953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Melkonian M; Wong GK; Brown LS; Spudich JL
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cardiac optogenetics by vitamin A.
    Keshmiri Neghab H; Goliaei B; Saboury AA; Esmaeeli Djavid G; Pornour M; Hong J; Grusch M
    Biofactors; 2019 Nov; 45(6):983-990. PubMed ID: 31509323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision.
    Volkov LI; Kim-Han JS; Saunders LM; Poria D; Hughes AEO; Kefalov VJ; Parichy DM; Corbo JC
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15262-15269. PubMed ID: 32541022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior.
    Wietek J; Rodriguez-Rozada S; Tutas J; Tenedini F; Grimm C; Oertner TG; Soba P; Hegemann P; Wiegert JS
    Sci Rep; 2017 Nov; 7(1):14957. PubMed ID: 29097684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making light work of fine-tuning channelrhodopsins.
    Moorhouse AJ; Power JM
    J Biol Chem; 2019 Mar; 294(11):3822-3823. PubMed ID: 30877261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminishing neuronal acidification by channelrhodopsins with low proton conduction.
    Hayward RF; Brooks FP; Yang S; Gao S; Cohen AE
    Elife; 2023 Oct; 12():. PubMed ID: 37801078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.