These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37987912)

  • 21. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.
    Nishino K; Yoshikawa H; Motani K; Kosako H
    J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress.
    Zhang K; Li Y; Huang T; Li Z
    Front Plant Sci; 2022; 13():974598. PubMed ID: 36051300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient proximity labeling in living cells and organisms with TurboID.
    Branon TC; Bosch JA; Sanchez AD; Udeshi ND; Svinkina T; Carr SA; Feldman JL; Perrimon N; Ting AY
    Nat Biotechnol; 2018 Oct; 36(9):880-887. PubMed ID: 30125270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proximity Biotin Labeling Reveals Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor Networks.
    Kumar A; Salemi M; Bhullar R; Guevara-Plunkett S; Lyu Y; Wang KH; Izumiya C; Campbell M; Nakajima KI; Izumiya Y
    J Virol; 2021 Apr; 95(9):. PubMed ID: 33597212
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Uçkun E; Wolfstetter G; Fuchs J; Palmer RH
    Bio Protoc; 2022 Jul; 12(13):. PubMed ID: 35937934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proximity Labeling for the Identification of Coronavirus-Host Protein Interactions.
    V'kovski P; Steiner S; Thiel V
    Methods Mol Biol; 2020; 2203():187-204. PubMed ID: 32833213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines.
    Sunna S; Bowen C; Zeng H; Rayaprolu S; Kumar P; Bagchi P; Dammer EB; Guo Q; Duong DM; Bitarafan S; Natu A; Wood L; Seyfried NT; Rangaraju S
    Mol Cell Proteomics; 2023 Jun; 22(6):100546. PubMed ID: 37061046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Single-Cell-Type Proteome Profiling of Mouse Brain by Nonsurgical AAV-Mediated Proximity Labeling.
    Sun X; Sun H; Han X; Chen PC; Jiao Y; Wu Z; Zhang X; Wang Z; Niu M; Yu K; Liu D; Dey KK; Mancieri A; Fu Y; Cho JH; Li Y; Poudel S; Branon TC; Ting AY; Peng J
    Anal Chem; 2022 Apr; 94(13):5325-5334. PubMed ID: 35315655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics.
    Li H; Frankenfield AM; Houston R; Sekine S; Hao L
    J Am Soc Mass Spectrom; 2021 Sep; 32(9):2358-2365. PubMed ID: 33909971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proximity-dependent biotin labeling in testicular germ cells identified TESMIN-associated proteins.
    Oura S; Ninomiya A; Sugihara F; Matzuk MM; Ikawa M
    Sci Rep; 2022 Dec; 12(1):22198. PubMed ID: 36564444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Streamlined Biotinylation, Enrichment and Analysis for Enhanced Plasma Membrane Protein Identification Using TurboID and TurboID-Start Biotin Ligases.
    Sarihan M; Kasap M; Akpinar G
    J Membr Biol; 2024 Apr; 257(1-2):91-105. PubMed ID: 38289568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Workflow enhancement of TurboID-mediated proximity labeling for SPY signaling network mapping.
    Grismer TS; Karundasa SS; Shrestha R; Byun D; Ni W; Reyes AV; Xu SL
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyrosinase-Based Proximity Labeling in Living Cells and
    Zhu H; Oh JH; Matsuda Y; Mino T; Ishikawa M; Nakamura H; Tsujikawa M; Nonaka H; Hamachi I
    J Am Chem Soc; 2024 Mar; 146(11):7515-7523. PubMed ID: 38445591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotin-Based Proximity Labeling of Protein Complexes in Planta.
    Khan M; Subramaniam R; Desveaux D
    Methods Mol Biol; 2021; 2200():425-440. PubMed ID: 33175391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology.
    Su Y; Guo Y; Guo J; Zeng T; Wang T; Liu W
    BMC Genomics; 2023 Mar; 24(1):146. PubMed ID: 36964488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Split-TurboID enables contact-dependent proximity labeling in cells.
    Cho KF; Branon TC; Rajeev S; Svinkina T; Udeshi ND; Thoudam T; Kwak C; Rhee HW; Lee IK; Carr SA; Ting AY
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12143-12154. PubMed ID: 32424107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response.
    Kreis E; König K; Misir M; Niemeyer J; Sommer F; Schroda M
    Plant Physiol; 2023 Oct; 193(3):1772-1796. PubMed ID: 37310689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The development of proximity labeling technology and its applications in mammals, plants, and microorganisms.
    Guo J; Guo S; Lu S; Gong J; Wang L; Ding L; Chen Q; Liu W
    Cell Commun Signal; 2023 Sep; 21(1):269. PubMed ID: 37777761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards the in vivo identification of protein-protein interactions.
    Suzuki Y; Kadomatsu K; Sakamoto K
    J Biochem; 2023 May; 173(6):413-415. PubMed ID: 36821413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.