These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 37987977)
1. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
2. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Moayedi H; Dehrashid AA Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
4. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. Nhu VH; Shirzadi A; Shahabi H; Singh SK; Al-Ansari N; Clague JJ; Jaafari A; Chen W; Miraki S; Dou J; Luu C; Górski K; Thai Pham B; Nguyen HD; Ahmad BB Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316191 [TBL] [Abstract][Full Text] [Related]
5. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison. Huang Z; Peng L; Li S; Liu Y; Zhou S Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134 [TBL] [Abstract][Full Text] [Related]
6. Game-theoretic optimization of landslide susceptibility mapping: a comparative study between Bayesian-optimized basic neural network and new generation neural network models. Mallick J; Alkahtani M; Hang HT; Singh CK Environ Sci Pollut Res Int; 2024 Apr; 31(20):29811-29835. PubMed ID: 38592629 [TBL] [Abstract][Full Text] [Related]
7. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based landslide susceptibility mapping. Azarafza M; Azarafza M; Akgün H; Atkinson PM; Derakhshani R Sci Rep; 2021 Dec; 11(1):24112. PubMed ID: 34916586 [TBL] [Abstract][Full Text] [Related]
9. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
10. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
12. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Tekin S; Çan T Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630 [TBL] [Abstract][Full Text] [Related]
13. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique. Hussain MA; Chen Z; Zheng Y; Shoaib M; Shah SU; Ali N; Afzal Z Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590807 [TBL] [Abstract][Full Text] [Related]
14. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related]
15. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
16. Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning. Wang X; Zhang X; Bi J; Zhang X; Deng S; Liu Z; Wang L; Guo H Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361127 [TBL] [Abstract][Full Text] [Related]
17. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936 [TBL] [Abstract][Full Text] [Related]
18. Landslide Susceptibility Assessment Using an AutoML Framework. Bruzón AG; Arrogante-Funes P; Arrogante-Funes F; Martín-González F; Novillo CJ; Fernández RR; Vázquez-Jiménez R; Alarcón-Paredes A; Alonso-Silverio GA; Cantu-Ramirez CA; Ramos-Bernal RN Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682717 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
20. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China. Yu X; Wang Y; Niu R; Hu Y Int J Environ Res Public Health; 2016 May; 13(5):. PubMed ID: 27187430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]