These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37988286)

  • 1. Current-Limited Conductive Atomic Force Microscopy.
    Weber J; Yuan Y; Pazos S; Kühnel F; Metzke C; Schätz J; Frammelsberger W; Benstetter G; Lanza M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56365-56374. PubMed ID: 37988286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Relative Humidity in Conductive Atomic Force Microscopy.
    Yuan Y; Lanza M
    Adv Mater; 2024 Sep; ():e2405932. PubMed ID: 39258343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid Platinum Nanoprobes for Highly Reliable Conductive Atomic Force Microscopy.
    Weber J; Yuan Y; Kühnel F; Metzke C; Schätz J; Frammelsberger W; Benstetter G; Lanza M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21602-21608. PubMed ID: 37083396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Current Instabilities in Conductive Atomic Force Microscopy.
    Jiang L; Weber J; Puglisi FM; Pavan P; Larcher L; Frammelsberger W; Benstetter G; Lanza M
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717254
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of the photocurrents generated by the laser of atomic force microscopes.
    Ji Y; Hui F; Shi Y; Iglesias V; Lewis D; Niu J; Long S; Liu M; Hofer A; Frammelsberger W; Benstetter G; Scheuermann A; McIntyre PC; Lanza M
    Rev Sci Instrum; 2016 Aug; 87(8):083703. PubMed ID: 27587127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Atomic Force Microscopy-Ultralow-Current Measurement Systems for Nanoscale Imaging of a Surface's Electrical Properties.
    Sikora A; Gajewski K; Badura D; Pruchnik B; Piasecki T; Raczkowski K; Gotszalk T
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating the Use of Conductive Atomic Force Microscopy for Defect Quantification in 2D Materials.
    Xu K; Holbrook M; Holtzman LN; Pasupathy AN; Barmak K; Hone JC; Rosenberger MR
    ACS Nano; 2023 Dec; 17(24):24743-24752. PubMed ID: 38095969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric Properties of Ultrathin CaF
    Wen C; Banshchikov AG; Illarionov YY; Frammelsberger W; Knobloch T; Hui F; Sokolov NS; Grasser T; Lanza M
    Adv Mater; 2020 Aug; 32(34):e2002525. PubMed ID: 32666564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive Atomic Force Microscopy Study of the Resistive Switching in Yttria-Stabilized Zirconia Films with Au Nanoparticles.
    Filatov D; Kazantseva I; Antonov D; Antonov I; Shenina M; Pavlov D; Gorshkov O
    Scanning; 2018; 2018():5489596. PubMed ID: 30057656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.
    Bârsan OA; Hoffmann GG; van der Ven LG; de With G
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19701-8. PubMed ID: 27404764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical conductivity measurement of
    Wang Y; Xie Y; Gao M; Zhang W; Liu L; Qu Y; Wang J; Hu C; Song Z; Wang Z
    Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34134105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Observation of Low-Power Nano-Synaptic Response in Graphene Oxide Using Conductive Atomic Force Microscopy.
    Hui F; Liu P; Hodge SA; Carey T; Wen C; Torrisi F; Galhena DTL; Tomarchio F; Lin Y; Moreno E; Roldan JB; Koren E; Ferrari AC; Lanza M
    Small; 2021 Jul; 17(26):e2101100. PubMed ID: 34081416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force and light tuning vertical tunneling current in the atomic layered MoS
    Li F; Lu Z; Lan YW; Jiao L; Xu M; Zhu X; Zhang X; Wu H; Qi J
    Nanotechnology; 2018 Jul; 29(27):275202. PubMed ID: 29652251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Probing of Polarization Charge at Nanoscale Level.
    Kwon O; Seol D; Lee D; Han H; Lindfors-Vrejoiu I; Lee W; Jesse S; Lee HN; Kalinin SV; Alexe M; Kim Y
    Adv Mater; 2018 Jan; 30(1):. PubMed ID: 29134691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy.
    Reid OG; Munechika K; Ginger DS
    Nano Lett; 2008 Jun; 8(6):1602-9. PubMed ID: 18447400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy.
    Cavalcoli D; Rossi M; Tomasi A; Cavallini A
    Nanotechnology; 2009 Jan; 20(4):045702. PubMed ID: 19417328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope.
    Lanza M
    Materials (Basel); 2014 Mar; 7(3):2155-2182. PubMed ID: 28788561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbons in the Meniscus: Effects on Conductive Atomic Force Microscopy.
    Tolman NL; Bai R; Liu H
    Langmuir; 2023 Mar; 39(12):4274-4281. PubMed ID: 36935562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy.
    Chen R; Vishnubhotla SB; Jacobs TDB; Martini A
    Nanoscale; 2019 Jan; 11(3):1029-1036. PubMed ID: 30569937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.