BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37988293)

  • 1. Cryo-Electrohydrodynamic Jetting of Aqueous Silk Fibroin Solutions.
    Reizabal A; Saiz PG; Luposchainsky S; Liashenko I; Chasko D; Lanceros-Méndez S; Lindberg G; Dalton PD
    ACS Biomater Sci Eng; 2024 Mar; 10(3):1843-1855. PubMed ID: 37988293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Cryogenic Electrohydrodynamic Jet Printing for Fabrication of Fine Scaffolds with Extra Filament Surface Topography.
    Li Y; Zhou J; Wu C; Yu Z; Zhang W; Li W; Zhang X
    3D Print Addit Manuf; 2020 Oct; 7(5):230-236. PubMed ID: 36654919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic jet 3D printing in biomedical applications.
    Wu Y
    Acta Biomater; 2021 Jul; 128():21-41. PubMed ID: 33905945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks.
    Ramon A; Liashenko I; Rosell-Llompart J; Cabot A
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic 3D Printing of Aqueous Solutions.
    Reizabal A; Tandon B; Lanceros-Méndez S; Dalton PD
    Small; 2023 Feb; 19(7):e2205255. PubMed ID: 36482162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics of moderately stretched electrified jets in electrohydrodynamic jet printing.
    Singh AK; Choubey A; Srivastava RK; Bahga SS
    Phys Rev E; 2023 Apr; 107(4-2):045103. PubMed ID: 37198839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt Electrowriting of Nylon-12 Microfibers with an Open-Source 3D Printer.
    Reizabal A; Devlin BL; Paxton NC; Saiz PG; Liashenko I; Luposchainsky S; Woodruff MA; Lanceros-Mendez S; Dalton PD
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300424. PubMed ID: 37821091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D freeform printing of silk fibroin.
    Rodriguez MJ; Dixon TA; Cohen E; Huang W; Omenetto FG; Kaplan DL
    Acta Biomater; 2018 Apr; 71():379-387. PubMed ID: 29550442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing of Silk Protein Structures by Aqueous Solvent-Directed Molecular Assembly.
    Mu X; Wang Y; Guo C; Li Y; Ling S; Huang W; Cebe P; Hsu HH; De Ferrari F; Jiang X; Xu Q; Balduini A; Omenetto FG; Kaplan DL
    Macromol Biosci; 2020 Jan; 20(1):e1900191. PubMed ID: 31433126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.
    Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH
    Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillation Dynamics of Dielectric Polymer Droplets during Electrohydrodynamic Jetting in a Wide Range of Viscosities.
    Tkachenko V; Coppola S; Vespini V; Tammaro D; Maffettone PL; Ferraro P; Grilli S
    Langmuir; 2023 Dec; 39(50):18403-18409. PubMed ID: 38055972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy.
    Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F
    ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications.
    Wunner FM; Bas O; Saidy NT; Dalton PD; Pardo EMD; Hutmacher DW
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures.
    Qi Y; Wang H; Wei K; Yang Y; Zheng RY; Kim IS; Zhang KQ
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin.
    Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.