These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37988608)

  • 1. Quantum neural networks for the discovery and implementation of quantum error-correcting codes.
    Chalkiadakis A; Theocharakis M; Barmparis GD; Tsironis GP
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37988608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of three-qubit quantum error correction with superconducting circuits.
    Reed MD; DiCarlo L; Nigg SE; Sun L; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2012 Feb; 482(7385):382-5. PubMed ID: 22297844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum control of a cat qubit with bit-flip times exceeding ten seconds.
    Réglade U; Bocquet A; Gautier R; Cohen J; Marquet A; Albertinale E; Pankratova N; Hallén M; Rautschke F; Sellem LA; Rouchon P; Sarlette A; Mirrahimi M; Campagne-Ibarcq P; Lescanne R; Jezouin S; Leghtas Z
    Nature; 2024 May; 629(8013):778-783. PubMed ID: 38710932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits.
    Gong M; Yuan X; Wang S; Wu Y; Zhao Y; Zha C; Li S; Zhang Z; Zhao Q; Liu Y; Liang F; Lin J; Xu Y; Deng H; Rong H; Lu H; Benjamin SC; Peng CZ; Ma X; Chen YA; Zhu X; Pan JW
    Natl Sci Rev; 2022 Jan; 9(1):nwab011. PubMed ID: 35070323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential suppression of bit or phase errors with cyclic error correction.
    Google Quantum AI
    Nature; 2021 Jul; 595(7867):383-387. PubMed ID: 34262210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting bit-flip errors in a logical qubit using stabilizer measurements.
    Ristè D; Poletto S; Huang MZ; Bruno A; Vesterinen V; Saira OP; DiCarlo L
    Nat Commun; 2015 Apr; 6():6983. PubMed ID: 25923318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error-Transparent Quantum Gates for Small Logical Qubit Architectures.
    Kapit E
    Phys Rev Lett; 2018 Feb; 120(5):050503. PubMed ID: 29481172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.
    Córcoles AD; Magesan E; Srinivasan SJ; Cross AW; Steffen M; Gambetta JM; Chow JM
    Nat Commun; 2015 Apr; 6():6979. PubMed ID: 25923200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.
    Zhang J; Laflamme R; Suter D
    Phys Rev Lett; 2012 Sep; 109(10):100503. PubMed ID: 23005271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum computations on a topologically encoded qubit.
    Nigg D; Müller M; Martinez EA; Schindler P; Hennrich M; Monz T; Martin-Delgado MA; Blatt R
    Science; 2014 Jul; 345(6194):302-5. PubMed ID: 24925911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant improvement of fidelity for encoded quantum bell pairs at long and short-distance communication along with generalized circuit.
    Shubha SEU; Rahman MS; Mahdy MRC
    Heliyon; 2023 Sep; 9(9):e19700. PubMed ID: 37809815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental demonstration of continuous quantum error correction.
    Livingston WP; Blok MS; Flurin E; Dressel J; Jordan AN; Siddiqi I
    Nat Commun; 2022 Apr; 13(1):2307. PubMed ID: 35484135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State preservation by repetitive error detection in a superconducting quantum circuit.
    Kelly J; Barends R; Fowler AG; Megrant A; Jeffrey E; White TC; Sank D; Mutus JY; Campbell B; Chen Y; Chen Z; Chiaro B; Dunsworth A; Hoi IC; Neill C; O'Malley PJ; Quintana C; Roushan P; Vainsencher A; Wenner J; Cleland AN; Martinis JM
    Nature; 2015 Mar; 519(7541):66-9. PubMed ID: 25739628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered error correction of codeword-stabilized quantum codes.
    Li Y; Dumer I; Pryadko LP
    Phys Rev Lett; 2010 May; 104(19):190501. PubMed ID: 20866952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Quantum Error Correction of Dephasing Induced by a Common Fluctuator.
    Layden D; Chen M; Cappellaro P
    Phys Rev Lett; 2020 Jan; 124(2):020504. PubMed ID: 32004019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analog Quantum Error Correction with Encoding a Qubit into an Oscillator.
    Fukui K; Tomita A; Okamoto A
    Phys Rev Lett; 2017 Nov; 119(18):180507. PubMed ID: 29219558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resource-efficient fault-tolerant one-way quantum repeater with code concatenation.
    Wo KJ; Avis G; Rozpędek F; Mor-Ruiz MF; Pieplow G; Schröder T; Jiang L; Sørensen AS; Borregaard J
    npj Quantum Inf; 2023; 9(1):123. PubMed ID: 38665254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource analysis and modifications of quantum computing with noisy qubits for elliptic curve discrete logarithms.
    Ha J; Lee J; Heo J
    Sci Rep; 2024 Feb; 14(1):3927. PubMed ID: 38366063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of fault-tolerant universal quantum gate operations.
    Postler L; Heuβen S; Pogorelov I; Rispler M; Feldker T; Meth M; Marciniak CD; Stricker R; Ringbauer M; Blatt R; Schindler P; Müller M; Monz T
    Nature; 2022 May; 605(7911):675-680. PubMed ID: 35614250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental deterministic correction of qubit loss.
    Stricker R; Vodola D; Erhard A; Postler L; Meth M; Ringbauer M; Schindler P; Monz T; Müller M; Blatt R
    Nature; 2020 Sep; 585(7824):207-210. PubMed ID: 32908267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.