BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37988876)

  • 1. SERS-based pH-Dependent detection of sulfites in wine by hydrogel nanocomposites.
    Yilmaz D; Miranda B; Lonardo E; Rea I; De Stefano L; De Luca AC
    Biosens Bioelectron; 2024 Feb; 245():115836. PubMed ID: 37988876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of total sulfite in wine by ion chromatography after in-sample oxidation.
    Koch M; Köppen R; Siegel D; Witt A; Nehls I
    J Agric Food Chem; 2010 Sep; 58(17):9463-7. PubMed ID: 20690603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.
    Plaza A; Romero J; Silva W; Morales E; Torres A; Aguirre MJ
    Food Sci Technol Int; 2014 Oct; 20(7):501-10. PubMed ID: 23897976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfites detection by surface-enhanced Raman spectroscopy: A feasibility study.
    Villar A; Merino S; Boto RA; Aizpurua J; Garcia A; Azkune M; Zubia J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122899. PubMed ID: 37262972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Headspace thin-film microextraction coupled with surface-enhanced Raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine.
    Deng Z; Chen X; Wang Y; Fang E; Zhang Z; Chen X
    Anal Chem; 2015 Jan; 87(1):633-40. PubMed ID: 25415770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine.
    Li D; Duan H; Ma Y; Deng W
    Anal Chem; 2018 May; 90(9):5719-5727. PubMed ID: 29648444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy.
    Mandrile L; Cagnasso I; Berta L; Giovannozzi AM; Petrozziello M; Pellegrino F; Asproudi A; Durbiano F; Rossi AM
    Food Chem; 2020 Oct; 326():127009. PubMed ID: 32438230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H; Rodriguez K; Renneckar S; Leng W; Vikesland PJ
    Analyst; 2015 Aug; 140(16):5640-9. PubMed ID: 26133311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of free (pH 2.2) sulfite in wines by flow injection analysis: collaborative study.
    Sullivan JJ; Hollingworth TA; Wekell MM; Meo VA; Etemad-Moghadam A; Phillips JG; Gump BH
    J Assoc Off Anal Chem; 1990; 73(2):223-6. PubMed ID: 2324033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone.
    Guo Z; Gao L; Yin L; Arslan M; El-Seedi HR; Zou X
    Food Chem; 2023 Mar; 403():134384. PubMed ID: 36179642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Transcriptomic Response to SO
    Onetto CA; Costello PJ; Kolouchova R; Jordans C; McCarthy J; Schmidt SA
    Microbiol Spectr; 2021 Oct; 9(2):e0115421. PubMed ID: 34612664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of sulphite in wine by coulometric titration.
    Lowinsohn D; Bertotti M
    Food Addit Contam; 2001 Sep; 18(9):773-7. PubMed ID: 11552744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved sample preparation and rapid UHPLC analysis of SO2 binding carbonyls in wine by derivatisation to 2,4-dinitrophenylhydrazine.
    Jackowetz JN; Mira de Orduña R
    Food Chem; 2013 Aug; 139(1-4):100-4. PubMed ID: 23561084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disposable Microchamber with a Microfluidic Paper-Based Lid for Generation and Membrane Separation of SO
    Prasertying P; Ninlapath T; Jantawong N; Wongpakdee T; Sonsa-Ard T; Uraisin K; Saetear P; Wilairat P; Nacapricha D
    Anal Chem; 2022 Jun; 94(22):7892-7900. PubMed ID: 35609256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles.
    Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y
    Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of reduced levels of sulfite in wine production using mixtures with lysozyme and dimethyl dicarbonate on levels of volatile and biogenic amines.
    Ancín-Azpilicueta C; Jiménez-Moreno N; Moler JA; Nieto-Rojo R; Urmeneta H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Oct; 33(10):1518-1526. PubMed ID: 27597233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of fluorescence-SERS dual-probe nanocomposites for ultrasensitive detection of sulfur-containing gases in water and beer samples.
    Zhu A; Ali S; Jiao T; Wang Z; Xu Y; Ouyang Q; Chen Q
    Food Chem; 2023 Sep; 420():136095. PubMed ID: 37075573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag/Poly(
    Su R; Li G; Xiao X
    Anal Chem; 2023 Apr; 95(15):6399-6409. PubMed ID: 37017607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of biomolecule encapsulated gold-cross-linked poly(ethylene glycol) nanocomposite as biosensing platform: a model study.
    Odaci D; Kahveci MU; Sahkulubey EL; Ozdemir C; Uyar T; Timur S; Yagci Y
    Bioelectrochemistry; 2010 Oct; 79(2):211-7. PubMed ID: 20605749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of free and total sulfur dioxide in wine by using a gas-diffusion analytical system with pH detection.
    Giménez-Gómez P; Gutiérrez-Capitán M; Puig-Pujol A; Capdevila F; Muñoz S; Tobeña A; Miró A; Jiménez-Jorquera C
    Food Chem; 2017 Aug; 228():518-525. PubMed ID: 28317758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.