BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37989222)

  • 1. Molecular details of the CPSF73-CPSF100 C-terminal heterodimer and interaction with Symplekin.
    Thore S; Raoelijaona F; Talenton V; Fribourg S; Mackereth CD
    Open Biol; 2023 Nov; 13(11):230221. PubMed ID: 37989222
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Thore S; Fribourg S; Mackereth CD
    Biomol NMR Assign; 2023 Jun; 17(1):43-48. PubMed ID: 36723825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex.
    Michalski D; Steiniger M
    RNA; 2015 Aug; 21(8):1404-18. PubMed ID: 26081560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs.
    Sullivan KD; Steiniger M; Marzluff WF
    Mol Cell; 2009 May; 34(3):322-32. PubMed ID: 19450530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complex containing the CPSF73 endonuclease and other polyadenylation factors associates with U7 snRNP and is recruited to histone pre-mRNA for 3'-end processing.
    Yang XC; Sabath I; Dębski J; Kaus-Drobek M; Dadlez M; Marzluff WF; Dominski Z
    Mol Cell Biol; 2013 Jan; 33(1):28-37. PubMed ID: 23071092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors.
    Sabath I; Skrajna A; Yang XC; Dadlez M; Marzluff WF; Dominski Z
    RNA; 2013 Dec; 19(12):1726-44. PubMed ID: 24145821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5'-3' exonuclease.
    Yang XC; Sun Y; Aik WS; Marzluff WF; Tong L; Dominski Z
    RNA; 2020 Oct; 26(10):1345-1359. PubMed ID: 32554553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights into the Human Pre-mRNA 3'-End Processing Machinery.
    Zhang Y; Sun Y; Shi Y; Walz T; Tong L
    Mol Cell; 2020 Feb; 77(4):800-809.e6. PubMed ID: 31810758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila melanogaster retrotransposon and inverted repeat-derived endogenous siRNAs are differentially processed in distinct cellular locations.
    Harrington AW; McKain MR; Michalski D; Bauer KM; Daugherty JM; Steiniger M
    BMC Genomics; 2017 Apr; 18(1):304. PubMed ID: 28415970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3'-end maturation.
    Kolev NG; Yario TA; Benson E; Steitz JA
    EMBO Rep; 2008 Oct; 9(10):1013-8. PubMed ID: 18688255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease.
    Liu H; Moore CL
    Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time fluorescence assay for CPSF73, the nuclease for pre-mRNA 3'-end processing.
    Gutierrez PA; Baughman K; Sun Y; Tong L
    RNA; 2021 Oct; 27(10):1148-1154. PubMed ID: 34230059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11.
    Huang J; Liu X; Sun Y; Li Z; Lin MH; Hamilton K; Mandel CR; Sandmeir F; Conti E; Oyala PH; Tong L
    J Biol Chem; 2023 Apr; 299(4):103047. PubMed ID: 36822327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits.
    Rao S; Dinkins RD; Hunt AG
    BMC Cell Biol; 2009 Jul; 10():51. PubMed ID: 19573236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination.
    Lin J; Xu R; Wu X; Shen Y; Li QQ
    Plant J; 2017 Sep; 91(5):829-839. PubMed ID: 28621907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.