These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37989303)
1. Effect of the Interfacial Tension on the Stability of Silica Stabilized Pickering Emulsions near the Lower Critical Solution Temperature of 2,6-Lutidine - Water Mixtures. Matsubara H; Doi J J Oleo Sci; 2023 Dec; 72(12):1091-1095. PubMed ID: 37989303 [TBL] [Abstract][Full Text] [Related]
2. Demulsification of Silica Stabilized Pickering Emulsions Using Surface Freezing Transition of CTAC Adsorbed Films at the Tetradecane-Water Interface. Shishida K; Matsubara H J Oleo Sci; 2023 Dec; 72(12):1083-1089. PubMed ID: 37989305 [TBL] [Abstract][Full Text] [Related]
3. Pickering Emulsion Transitions in 2,6-Lutidine Plus Water Critical Liquid Mixtures. Matsubara H; Chiguchi K; Law BM Langmuir; 2020 Oct; 36(42):12601-12606. PubMed ID: 33054245 [TBL] [Abstract][Full Text] [Related]
4. Demulsification of Bacteria-Stabilized Pickering Emulsions Using Modified Silica Nanoparticles. Xie H; Zhao W; Zhang X; Wang Z ACS Appl Mater Interfaces; 2022 Jun; 14(21):24102-24112. PubMed ID: 35603430 [TBL] [Abstract][Full Text] [Related]
5. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres. Zhang Y; Bao Y; Zhang W; Xiang R J Colloid Interface Sci; 2023 Mar; 633():1012-1021. PubMed ID: 36516677 [TBL] [Abstract][Full Text] [Related]
6. Adding nanoparticles to improve emulsion efficiency and enhance microbial degradation in Pickering emulsions. Ali DC; Zhang X; Wang Z Appl Microbiol Biotechnol; 2023 Sep; 107(18):5843-5854. PubMed ID: 37466667 [TBL] [Abstract][Full Text] [Related]
7. Enhanced stability of Pickering emulsions through co-stabilization with nanoliposomes and thermally denatured ovalbumin. Gu J; Pan MH; Chiou YS; Wei S; Ding B Int J Biol Macromol; 2024 Oct; 278(Pt 1):134561. PubMed ID: 39127283 [TBL] [Abstract][Full Text] [Related]
8. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Zhai X; Lin D; Liu D; Yang X Food Res Int; 2018 Jan; 103():12-20. PubMed ID: 29389597 [TBL] [Abstract][Full Text] [Related]
9. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles. White KA; Schofield AB; Wormald P; Tavacoli JW; Binks BP; Clegg PS J Colloid Interface Sci; 2011 Jul; 359(1):126-35. PubMed ID: 21507417 [TBL] [Abstract][Full Text] [Related]
10. Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis. Jiang H; Liu L; Li Y; Yin S; Ngai T ACS Appl Mater Interfaces; 2020 Jan; 12(4):4989-4997. PubMed ID: 31909591 [TBL] [Abstract][Full Text] [Related]
11. Pickering w/o emulsions: drug release and topical delivery. Frelichowska J; Bolzinger MA; Valour JP; Mouaziz H; Pelletier J; Chevalier Y Int J Pharm; 2009 Feb; 368(1-2):7-15. PubMed ID: 18992799 [TBL] [Abstract][Full Text] [Related]
13. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles. Yuan DB; Hu YQ; Zeng T; Yin SW; Tang CH; Yang XQ Food Funct; 2017 Jun; 8(6):2220-2230. PubMed ID: 28513748 [TBL] [Abstract][Full Text] [Related]
14. On the shear stability of water-in-water Pickering emulsions stabilized with silica nanoparticles. Griffith C; Daigle H J Colloid Interface Sci; 2018 Dec; 532():83-91. PubMed ID: 30077068 [TBL] [Abstract][Full Text] [Related]
15. Demulsification of Pickering emulsions: advances in understanding mechanisms to applications. Hernandez-Rodriguez G; Tenorio-Garcia E; Ettelaie R; Lishchuk SV; Harbottle D; Murray BS; Sarkar A Soft Matter; 2024 Sep; 20(37):7344-7356. PubMed ID: 39258321 [TBL] [Abstract][Full Text] [Related]
16. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Song S; Li Y; Zhu Q; Zhang X; Wang Y; Tao L; Yu L Int J Biol Macromol; 2023 Jan; 226():61-71. PubMed ID: 36493922 [TBL] [Abstract][Full Text] [Related]
17. Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres. Jiang H; Hu X; Jiang W; Guan X; Li Y; Ngai T Langmuir; 2022 Oct; 38(40):12273-12280. PubMed ID: 36172706 [TBL] [Abstract][Full Text] [Related]
18. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. Guan X; Sheng Y; Jiang H; Binks BP; Ngai T J Colloid Interface Sci; 2022 Oct; 623():476-486. PubMed ID: 35597017 [TBL] [Abstract][Full Text] [Related]
19. Effects of solid particle content on properties of o/w Pickering emulsions. Frelichowska J; Bolzinger MA; Chevalier Y J Colloid Interface Sci; 2010 Nov; 351(2):348-56. PubMed ID: 20800850 [TBL] [Abstract][Full Text] [Related]
20. Effect of interparticle forces on the stability and droplet diameter of Pickering emulsions stabilized by PEG-coated silica nanoparticles. Hatchell D; Song W; Daigle H J Colloid Interface Sci; 2022 Nov; 626():824-835. PubMed ID: 35820217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]