BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 37989394)

  • 1. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops.
    Zhao L; Zhou X; Kang Z; Peralta-Videa JR; Zhu YG
    Sci Total Environ; 2024 Feb; 910():168640. PubMed ID: 37989394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses.
    Chen S; Liu H; Yangzong Z; Gardea-Torresdey JL; White JC; Zhao L
    Environ Sci Technol; 2023 Dec; 57(48):19932-19941. PubMed ID: 37975618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed germination and vigor: ensuring crop sustainability in a changing climate.
    Reed RC; Bradford KJ; Khanday I
    Heredity (Edinb); 2022 Jun; 128(6):450-459. PubMed ID: 35013549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed Priming with Zinc Oxide Nanoparticles to Enhance Crop Tolerance to Environmental Stresses.
    Donia DT; Carbone M
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed priming to alleviate salinity stress in germinating seeds.
    Ibrahim EA
    J Plant Physiol; 2016 Mar; 192():38-46. PubMed ID: 26812088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically modified crops: current status and future prospects.
    Kumar K; Gambhir G; Dass A; Tripathi AK; Singh A; Jha AK; Yadava P; Choudhary M; Rakshit S
    Planta; 2020 Mar; 251(4):91. PubMed ID: 32236850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.
    Kaur R; Kumar Bhunia R; Ghosh AK
    Recent Pat Biotechnol; 2016; 10(1):12-29. PubMed ID: 27494733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges.
    Shelar A; Singh AV; Maharjan RS; Laux P; Luch A; Gemmati D; Tisato V; Singh SP; Santilli MF; Shelar A; Chaskar M; Patil R
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review.
    Mariyam S; Upadhyay SK; Chakraborty K; Verma KK; Duhan JS; Muneer S; Meena M; Sharma RK; Ghodake G; Seth CS
    Sci Total Environ; 2024 Feb; 912():169097. PubMed ID: 38056665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Priming with Nanoscale Materials for Boosting Abiotic Stress Tolerance in Crop Plants.
    M S A; Sridharan K; Puthur JT; Dhankher OP
    J Agric Food Chem; 2021 Sep; 69(35):10017-10035. PubMed ID: 34459588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions.
    Wojtyla Ł; Lechowska K; Kubala S; Garnczarska M
    J Plant Physiol; 2016 Sep; 203():116-126. PubMed ID: 27174076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture.
    Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S
    Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants.
    Marthandan V; Geetha R; Kumutha K; Renganathan VG; Karthikeyan A; Ramalingam J
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33158156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically modified (GM) crops: milestones and new advances in crop improvement.
    Kamthan A; Chaudhuri A; Kamthan M; Datta A
    Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.