BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 37989394)

  • 21. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops.
    Singh N; Bhuker A; Jeevanadam J
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Jun; 394(6):1067-1089. PubMed ID: 33660031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges.
    Husaini AM
    Heredity (Edinb); 2022 Jun; 128(6):460-472. PubMed ID: 35173311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress.
    Johnson R; Puthur JT
    Plant Physiol Biochem; 2021 May; 162():247-257. PubMed ID: 33711718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants.
    Lee JHJ; Kasote DM
    Plants (Basel); 2024 Feb; 13(3):. PubMed ID: 38337979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Climate-Change-Resilient Crops: New Tools and Approaches.
    Shahinnia F; Carrillo N; Hajirezaei MR
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans-generational memory.
    Louis N; Dhankher OP; Puthur JT
    Physiol Plant; 2023 Mar; 175(2):e13881. PubMed ID: 36840678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants.
    Bhat MA; Mir RA; Kumar V; Shah AA; Zargar SM; Rahman S; Jan AT
    Physiol Plant; 2021 Jun; 172(2):1255-1268. PubMed ID: 33576013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant abiotic stress tolerance: Insights into resilience build-up.
    Suprasanna P
    J Biosci; 2020; 45():. PubMed ID: 33097677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage.
    El-Badri AM; Batool M; Mohamed IAA; Wang Z; Wang C; Tabl KM; Khatab A; Kuai J; Wang J; Wang B; Zhou G
    Environ Pollut; 2022 Oct; 310():119815. PubMed ID: 35926737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.
    Husaini AM; Tuteja N
    GM Crops Food; 2013; 4(1):1-9. PubMed ID: 23160541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring miRNAs for developing climate-resilient crops: A perspective review.
    Xu J; Hou QM; Khare T; Verma SK; Kumar V
    Sci Total Environ; 2019 Feb; 653():91-104. PubMed ID: 30408672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries.
    Acevedo M; Pixley K; Zinyengere N; Meng S; Tufan H; Cichy K; Bizikova L; Isaacs K; Ghezzi-Kopel K; Porciello J
    Nat Plants; 2020 Oct; 6(10):1231-1241. PubMed ID: 33051616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives.
    Nile SH; Thiruvengadam M; Wang Y; Samynathan R; Shariati MA; Rebezov M; Nile A; Sun M; Venkidasamy B; Xiao J; Kai G
    J Nanobiotechnology; 2022 Jun; 20(1):254. PubMed ID: 35659295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New approaches to improve crop tolerance to biotic and abiotic stresses.
    González Guzmán M; Cellini F; Fotopoulos V; Balestrini R; Arbona V
    Physiol Plant; 2022 Jan; 174(1):e13547. PubMed ID: 34480798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile.
    Waqas Mazhar M; Ishtiaq M; Hussain I; Parveen A; Hayat Bhatti K; Azeem M; Thind S; Ajaib M; Maqbool M; Sardar T; Muzammil K; Nasir N
    PLoS One; 2022; 17(3):e0264967. PubMed ID: 35324949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress.
    Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K
    Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.