These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37989398)

  • 1. Spontaneous transfer of small peripheral peptides between supported lipid bilayer and giant unilamellar vesicles.
    Efodili E; Knight A; Mirza M; Briones C; Lee IH
    Biochim Biophys Acta Biomembr; 2024 Feb; 1866(2):184256. PubMed ID: 37989398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains.
    Enoki TA
    Methods Enzymol; 2024; 700():127-159. PubMed ID: 38971598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles.
    Kunze A; Svedhem S; Kasemo B
    Langmuir; 2009 May; 25(9):5146-58. PubMed ID: 19326873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies.
    Hasan M; Yamazaki M
    Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-Mediated Liposome Fusion to Engineer Giant Lipid Vesicles with Cytosolic Proteins and Reconstituted Mammalian Proteins.
    Schmid YRF; Scheller L; Buchmann S; Dittrich PS
    Adv Biosyst; 2020 Nov; 4(11):e2000153. PubMed ID: 33084207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy.
    Mora NL; Boyle AL; Kolck BJV; Rossen A; Pokorná Š; Koukalová A; Šachl R; Hof M; Kros A
    Sci Rep; 2020 Feb; 10(1):3087. PubMed ID: 32080270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers.
    Kang JY; Choi I; Seo M; Lee JY; Hong S; Gong G; Shin SS; Lee Y; Kim JW
    J Colloid Interface Sci; 2020 Mar; 561():318-326. PubMed ID: 31740134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayer edges catalyze supported lipid bilayer formation.
    Weirich KL; Israelachvili JN; Fygenson DK
    Biophys J; 2010 Jan; 98(1):85-92. PubMed ID: 20085721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles.
    Bagatolli LA; Needham D
    Chem Phys Lipids; 2014 Jul; 181():99-120. PubMed ID: 24632023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.
    Morigaki K; Tanimoto Y
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2012-2017. PubMed ID: 29550290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds.
    Billah MM; Ahmed M; Islam MZ; Yamazaki M
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184330. PubMed ID: 38679311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles.
    Bhatia T; Cornelius F; Ipsen JH
    Nat Protoc; 2017 Aug; 12(8):1563-1575. PubMed ID: 28703789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Giant Unilamellar Vesicle Fusion Products by High-Throughput Image Analysis.
    Caliari A; Hanczyc MM; Imai M; Xu J; Yomo T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.
    Kamiya K; Kawano R; Osaki T; Akiyoshi K; Takeuchi S
    Nat Chem; 2016 Sep; 8(9):881-9. PubMed ID: 27554415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.