These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37990000)

  • 1. Optomechanical ring resonator for efficient microwave-optical frequency conversion.
    Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M
    Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits.
    Blésin T; Kao W; Siddharth A; Wang RN; Attanasio A; Tian H; Bhave SA; Kippenberg TJ
    Nat Commun; 2024 Jul; 15(1):6096. PubMed ID: 39030168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-low-noise microwave to optics conversion in gallium phosphide.
    Stockill R; Forsch M; Hijazi F; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Nat Commun; 2022 Nov; 13(1):6583. PubMed ID: 36323690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.
    Jiang W; Sarabalis CJ; Dahmani YD; Patel RN; Mayor FM; McKenna TP; Van Laer R; Safavi-Naeini AH
    Nat Commun; 2020 Mar; 11(1):1166. PubMed ID: 32127538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical Generation of Coherent GHz Vibrations in a Phononic Waveguide.
    Madiot G; Ng RC; Arregui G; Florez O; Albrechtsen M; Stobbe S; García PD; Sotomayor-Torres CM
    Phys Rev Lett; 2023 Mar; 130(10):106903. PubMed ID: 36962028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
    Safavi-Naeini AH; Painter O
    Opt Express; 2010 Jul; 18(14):14926-43. PubMed ID: 20639979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcavity phonoritons - a coherent optical-to-microwave interface.
    Kuznetsov AS; Biermann K; Reynoso AA; Fainstein A; Santos PV
    Nat Commun; 2023 Sep; 14(1):5470. PubMed ID: 37723165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies.
    Tadesse SA; Li M
    Nat Commun; 2014 Nov; 5():5402. PubMed ID: 25400144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Coupling between Phonons, Magnons, and Photons.
    Shen Z; Xu GT; Zhang M; Zhang YL; Wang Y; Chai CZ; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2022 Dec; 129(24):243601. PubMed ID: 36563280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip distribution of quantum information using traveling phonons.
    Zivari A; Fiaschi N; Burgwal R; Verhagen E; Stockill R; Gröblacher S
    Sci Adv; 2022 Nov; 8(46):eadd2811. PubMed ID: 36399558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chip-integrated coherent photonic-phononic memory.
    Merklein M; Stiller B; Vu K; Madden SJ; Eggleton BJ
    Nat Commun; 2017 Sep; 8(1):574. PubMed ID: 28924261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonreciprocal Frequency Conversion and Mode Routing in a Microresonator.
    Shen Z; Zhang YL; Chen Y; Xiao YF; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2023 Jan; 130(1):013601. PubMed ID: 36669210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.