These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37990010)

  • 1. Double superionicity in icy compounds at planetary interior conditions.
    de Villa K; González-Cataldo F; Militzer B
    Nat Commun; 2023 Nov; 14(1):7580. PubMed ID: 37990010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superionic and metallic states of water and ammonia at giant planet conditions.
    Cavazzoni C; Chiarotti GL; Scandolo S; Tosatti E; Bernasconi M; Parrinello M
    Science; 1999 Jan; 283(5398):44-6. PubMed ID: 9872734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual Chemistry of the C-H-N-O System under Pressure and Implications for Giant Planets.
    Naumova AS; Lepeshkin SV; Bushlanov PV; Oganov AR
    J Phys Chem A; 2021 May; 125(18):3936-3942. PubMed ID: 33938213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superionic Silica-Water and Silica-Hydrogen Compounds in the Deep Interiors of Uranus and Neptune.
    Gao H; Liu C; Shi J; Pan S; Huang T; Lu X; Wang HT; Xing D; Sun J
    Phys Rev Lett; 2022 Jan; 128(3):035702. PubMed ID: 35119900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of ammonia-rich hydrate inside icy planets.
    Naden Robinson V; Wang Y; Ma Y; Hermann A
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9003-9008. PubMed ID: 28784809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of H
    Huang P; Liu H; Lv J; Li Q; Long C; Wang Y; Chen C; Hemley RJ; Ma Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5638-5643. PubMed ID: 32127483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of xenon with ice at planetary conditions.
    Sanloup C; Bonev SA; Hochlaf M; Maynard-Casely HE
    Phys Rev Lett; 2013 Jun; 110(26):265501. PubMed ID: 23848893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors.
    Lobanov SS; Chen PN; Chen XJ; Zha CS; Litasov KD; Mao HK; Goncharov AF
    Nat Commun; 2013; 4():2446. PubMed ID: 24026399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow Melting Temperature of High-Pressure Face-Centered Cubic Superionic Ice.
    Niu C; Zhang H; Zhang J; Zeng Z; Wang X
    J Phys Chem Lett; 2022 Aug; 13(32):7448-7453. PubMed ID: 35930621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ammonia-helium compounds at high pressure.
    Shi J; Cui W; Hao J; Xu M; Wang X; Li Y
    Nat Commun; 2020 Jun; 11(1):3164. PubMed ID: 32572021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium oxide-water compounds at megabar pressure and implications on planetary interiors.
    Pan S; Huang T; Vazan A; Liang Z; Liu C; Wang J; Pickard CJ; Wang HT; Xing D; Sun J
    Nat Commun; 2023 Mar; 14(1):1165. PubMed ID: 36859401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-like elastic response of superionic NH
    Kimura T; Murakami M
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33782127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic and superionic phases in ammonia-water mixtures at high pressures and temperatures.
    Naden Robinson V; Hermann A
    J Phys Condens Matter; 2020 May; 32(18):184004. PubMed ID: 31914434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-Induced Superionicity of H
    Liang T; Zhang Z; Yu H; Cui T; Feng X; Pickard CJ; Duan D; Redfern SAT
    J Phys Chem Lett; 2021 Aug; 12(30):7166-7172. PubMed ID: 34297555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phase diagram of high-pressure superionic ice.
    Sun J; Clark BK; Torquato S; Car R
    Nat Commun; 2015 Aug; 6():8156. PubMed ID: 26315260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interiors of Uranus and Neptune: current understanding and open questions.
    Helled R; Fortney JJ
    Philos Trans A Math Phys Eng Sci; 2020 Dec; 378(2187):20190474. PubMed ID: 33161856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic compression of water to conditions in ice giant interiors.
    Gleason AE; Rittman DR; Bolme CA; Galtier E; Lee HJ; Granados E; Ali S; Lazicki A; Swift D; Celliers P; Militzer B; Stanley S; Mao WL
    Sci Rep; 2022 Jan; 12(1):715. PubMed ID: 35027608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convective storms and atmospheric vertical structure in Uranus and Neptune.
    Hueso R; Guillot T; Sánchez-Lavega A
    Philos Trans A Math Phys Eng Sci; 2020 Dec; 378(2187):20190476. PubMed ID: 33161859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors?
    Benedetti LR; Nguyen JH; Caldwell WA; Liu H; Kruger M; Jeanloz R
    Science; 1999 Oct; 286(5437):100-2. PubMed ID: 10506552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres.
    Kim T; Wei X; Chariton S; Prakapenka VB; Ryu YJ; Yang S; Shim SH
    Proc Natl Acad Sci U S A; 2023 Dec; 120(52):e2309786120. PubMed ID: 38109550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.