These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. Peňázová E; Dvořák M; Ragasová L; Kiss T; Pečenka J; Čechová J; Eichmeier A PLoS One; 2020; 15(1):e0227559. PubMed ID: 31910230 [TBL] [Abstract][Full Text] [Related]
5. Epiphytic and endophytic microorganisms associated to different cultivar of tomato fruits in greenhouse environment and characterization of beneficial bacterial strains for the control of post-harvest tomato pathogens. Panebianco S; Lombardo MF; Anzalone A; Musumarra A; Pellegriti MG; Catara V; Cirvilleri G Int J Food Microbiol; 2022 Oct; 379():109861. PubMed ID: 35930961 [TBL] [Abstract][Full Text] [Related]
6. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH; Trotel-Aziz P; Villaume S; Rabenoelina F; Clément C; Baillieul F; Aziz A J Exp Bot; 2022 Jun; 73(11):3743-3757. PubMed ID: 35191984 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. Choi J; Baek KH; Moon E Plant Pathol J; 2014 Sep; 30(3):245-53. PubMed ID: 25289010 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol Rhizobacterium Takishita Y; Charron JB; Smith DL Front Microbiol; 2018; 9():2119. PubMed ID: 30254615 [TBL] [Abstract][Full Text] [Related]
9. An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Camañes G; Scalschi L; Vicedo B; González-Bosch C; García-Agustín P Plant J; 2015 Oct; 84(1):125-39. PubMed ID: 26270176 [TBL] [Abstract][Full Text] [Related]
10. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H; Yan M; Deng R; Song F; Jiang M Gene; 2020 Feb; 727():144245. PubMed ID: 31715302 [TBL] [Abstract][Full Text] [Related]
11. Multiple Introductions of Tomato Pathogen Clavibacter michiganensis subsp. Ansari M; Taghavi SM; Hamzehzarghani H; Valenzuela M; Siri MI; Osdaghi E Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604763 [TBL] [Abstract][Full Text] [Related]
12. Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Oliveras À; Camó C; Caravaca-Fuentes P; Moll L; Riesco-Llach G; Gil-Caballero S; Badosa E; Bonaterra A; Montesinos E; Feliu L; Planas M Appl Environ Microbiol; 2022 Jun; 88(12):e0057422. PubMed ID: 35638842 [TBL] [Abstract][Full Text] [Related]
13. Multiple lysine substitutions in the peptaibol trichogin GA IV enhance the antibiotic activity against plant pathogenic Pseudomonas syringae. Fodil S; De Zotti M; Tundo S; Gabbatore L; Vettorazzo I; Luti S; Musetti R; Sella L; Favaron F; Baccelli I Pestic Biochem Physiol; 2024 May; 201():105901. PubMed ID: 38685232 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis-infected tomatoes: a role of salicylic acid in the host response. Yokotani N; Hasegawa Y; Sato M; Hirakawa H; Kouzai Y; Nishizawa Y; Yamamoto E; Naito Y; Isobe S BMC Plant Biol; 2021 Oct; 21(1):476. PubMed ID: 34666675 [TBL] [Abstract][Full Text] [Related]
15. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. Fang XL; Li ZZ; Wang YH; Zhang X J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568 [TBL] [Abstract][Full Text] [Related]
17. Interaction between 2,4-Diacetylphloroglucinol- and Hydrogen Cyanide-Producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the Tomato Rhizosphere. Paulin MM; Novinscak A; Lanteigne C; Gadkar VJ; Filion M Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432096 [TBL] [Abstract][Full Text] [Related]
18. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Kovalskaya N; Hammond RW Protein Expr Purif; 2009 Jan; 63(1):12-7. PubMed ID: 18824107 [TBL] [Abstract][Full Text] [Related]
19. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Balaji V; Smart CD Transgenic Res; 2012 Feb; 21(1):23-37. PubMed ID: 21479554 [TBL] [Abstract][Full Text] [Related]
20. Comparative Genomics and Phylogenetic Analyses Suggest Several Novel Species within the Genus Osdaghi E; Rahimi T; Taghavi SM; Ansari M; Zarei S; Portier P; Briand M; Jacques MA Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]