These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37990354)
41. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. Liu X; Jiao Y; Zheng Y; Jaroniec M; Qiao SZ J Am Chem Soc; 2019 Jun; 141(24):9664-9672. PubMed ID: 31145607 [TBL] [Abstract][Full Text] [Related]
42. Efficient Ambient Electrocatalytic Ammonia Synthesis by Nanogold Triggered via Boron Clusters Combined with Carbon Nanotubes. Zhao X; Yang Z; Kuklin AV; Baryshnikov GV; Ågren H; Zhou X; Zhang H ACS Appl Mater Interfaces; 2020 Sep; 12(38):42821-42831. PubMed ID: 32865968 [TBL] [Abstract][Full Text] [Related]
43. Spin regulation for efficient electrocatalytic N Gao S; Liu X; Wang Z; Lu Y; Sa R; Li Q; Sun C; Chen X; Ma Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):215-223. PubMed ID: 36327724 [TBL] [Abstract][Full Text] [Related]
44. Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction. Liang M; Shao X; Lee H Chemistry; 2024 Jan; 30(2):e202302843. PubMed ID: 37768323 [TBL] [Abstract][Full Text] [Related]
45. Boosting the Faraday Efficiency of Electrochemical Ammonia Synthesis via the Strain Effect Induced by Interfacial Hybrid Formation between BN and Carbon Nanotubes. Zhang M; Shen L; Yu C; Li T; Bai S; Su Y; Liu Z; Li Y ACS Appl Mater Interfaces; 2024 Feb; 16(7):8832-8841. PubMed ID: 38327039 [TBL] [Abstract][Full Text] [Related]
46. 1T-MoS Liu S; Yang G; Zhao L; Liu Z; Wang K; Li X; Li N Inorg Chem; 2022 May; 61(19):7608-7616. PubMed ID: 35500296 [TBL] [Abstract][Full Text] [Related]
47. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N Shi L; Bi S; Qi Y; Ning G; Ye J J Colloid Interface Sci; 2023 Jul; 641():577-584. PubMed ID: 36963251 [TBL] [Abstract][Full Text] [Related]
48. Flower-like Hollow MoSe Yang L; Wang H; Wang X; Luo W; Wu C; Wang CA; Xu C Inorg Chem; 2020 Sep; 59(17):12941-12946. PubMed ID: 32820911 [TBL] [Abstract][Full Text] [Related]
49. Single Ru-N Han Z; Huang S; Zhang J; Wang F; Han S; Wu P; He M; Zhuang X ACS Appl Mater Interfaces; 2023 Mar; 15(10):13025-13032. PubMed ID: 36857306 [TBL] [Abstract][Full Text] [Related]
50. Electrochemically synthesized SnO He X; Guo H; Liao T; Pu Y; Lai L; Wang Z; Tang H Nanoscale; 2021 Oct; 13(38):16307-16315. PubMed ID: 34559870 [TBL] [Abstract][Full Text] [Related]
51. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction. Kim D; Alam K; Han MK; Surendran S; Lim J; Young Kim J; Jun Moon D; Jeong G; Gon Kim M; Kwon G; Yang S; Gon Kang T; Kyu Kim J; Yeop Jung S; Cho H; Sim U J Colloid Interface Sci; 2023 Mar; 633():53-59. PubMed ID: 36434935 [TBL] [Abstract][Full Text] [Related]
52. Mo Wan Y; Wang Z; Li J; Lv R ACS Nano; 2022 Jan; 16(1):643-654. PubMed ID: 34964347 [TBL] [Abstract][Full Text] [Related]
53. Powerful Orbital Hybridization of Copper-Silver Bimetallic Nanosheets for Electrocatalytic Nitrogen Reduction to Ammonia. Lu X; Li J; Liu F; Wang Y; Tang X; Li H; Peng Y; Xu C Inorg Chem; 2023 Jul; 62(30):12148-12156. PubMed ID: 37465928 [TBL] [Abstract][Full Text] [Related]
54. Enhanced Nitrogen Reduction to Ammonia by Surface- and Defect-Engineered Co-catalyst-Modified Perovskite Catalysts under Ambient Conditions and Their Charge Carrier Dynamics. Bastia S; Moses YT; Kumar N; Mishra RP; Chaudhary YS ACS Appl Mater Interfaces; 2023 Mar; 15(10):13052-13063. PubMed ID: 36853145 [TBL] [Abstract][Full Text] [Related]
55. Tetrahedral W Zhang J; Fang C; Li Y; An W Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35259738 [TBL] [Abstract][Full Text] [Related]
56. Salt-Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Huang H; Li F; Xue Q; Zhang Y; Yin S; Chen Y Small; 2019 Dec; 15(51):e1903500. PubMed ID: 31858705 [TBL] [Abstract][Full Text] [Related]
57. Three-Phase Electrolysis by Gold Nanoparticle on Hydrophobic Interface for Enhanced Electrochemical Nitrogen Reduction Reaction. Zhang J; Zhao B; Liang W; Zhou G; Liang Z; Wang Y; Qu J; Sun Y; Jiang L Adv Sci (Weinh); 2020 Nov; 7(22):2002630. PubMed ID: 33240780 [TBL] [Abstract][Full Text] [Related]
58. Enhanced electrocatalytic performance of TiO Chen HJ; Deng GR; Feng ZS; Xu ZQ; Yang MY; Huang Y; Peng Q; Li T; Wang Y Chem Commun (Camb); 2022 Mar; 58(19):3214-3217. PubMed ID: 35174822 [TBL] [Abstract][Full Text] [Related]
59. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles. Yang X; Nash J; Anibal J; Dunwell M; Kattel S; Stavitski E; Attenkofer K; Chen JG; Yan Y; Xu B J Am Chem Soc; 2018 Oct; 140(41):13387-13391. PubMed ID: 30244579 [TBL] [Abstract][Full Text] [Related]
60. First-principles screening of transition metal doped anatase TiO Ji Y; Liu P; Huang Y Phys Chem Chem Phys; 2023 Feb; 25(7):5827-5835. PubMed ID: 36745429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]