These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37990651)

  • 1. Exploring the Use of Living Shorelines for Stabilization and Nutrient Mitigation in New England.
    Schoell M; Ayvazian S; Cobb D; Grunden D; Chintala M; Gerber-Williams A; Pimenta A; Strobel C; Rocha K
    Ecol Restor; 2023 Jun; 41(2-3):84-98. PubMed ID: 37990651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coastal resilience surges as living shorelines reduce lateral erosion of salt marshes.
    Polk MA; Gittman RK; Smith CS; Eulie DO
    Integr Environ Assess Manag; 2022 Jan; 18(1):82-98. PubMed ID: 33991025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reef design and site hydrodynamics mediate oyster restoration and marsh stabilization outcomes.
    Wellman EH; Baillie CJ; Puckett BJ; Donaher SE; Trackenberg SN; Gittman RK
    Ecol Appl; 2022 Mar; 32(2):e2506. PubMed ID: 34870355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living shorelines can enhance the nursery role of threatened estuarine habitats.
    Gittman RK; Peterson CH; Currin CA; Fodrie FJ; Piehler MF; Bruno JF
    Ecol Appl; 2016 Jan; 26(1):249-63. PubMed ID: 27039523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living shorelines achieve functional equivalence to natural fringe marshes across multiple ecological metrics.
    Isdell RE; Bilkovic DM; Guthrie AG; Mitchell MM; Chambers RM; Leu M; Hershner C
    PeerJ; 2021; 9():e11815. PubMed ID: 34447620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.
    Davis JL; Currin CA; O'Brien C; Raffenburg C; Davis A
    PLoS One; 2015; 10(11):e0142595. PubMed ID: 26569503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthropogenic modification of New England salt marsh landscapes.
    Bertness MD; Ewanchuk PJ; Silliman BR
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1395-8. PubMed ID: 11818525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew (2016).
    Smith CS; Puckett B; Gittman RK; Peterson CH
    Ecol Appl; 2018 Jun; 28(4):871-877. PubMed ID: 29702741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denitrification enzyme activity of fringe salt marshes in New England (USA).
    Wigand C; McKinney RA; Chintala MM; Charpentier MA; Groffman PM
    J Environ Qual; 2004; 33(3):1144-51. PubMed ID: 15224954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protective role of coastal marshes: a systematic review and meta-analysis.
    Shepard CC; Crain CM; Beck MW
    PLoS One; 2011; 6(11):e27374. PubMed ID: 22132099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A climate change adaptation strategy for management of coastal marsh systems.
    Wigand C; Ardito T; Chaffee C; Ferguson W; Paton S; Raposa K; Vandemoer C; Watson E
    Estuaries Coast; 2017 Jan; 40(3):682-693. PubMed ID: 30271313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using vulnerability assessment to characterize coastal protection benefits provided by estuarine habitats of a dynamic intracoastal waterway.
    Verutes GM; Yang PF; Eastman SF; Doughty CL; Adgie TE; Dietz K; Dix NG; North A; Guannel G; Chapman SK
    PeerJ; 2024; 12():e16738. PubMed ID: 38390391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs.
    La Peyre MK; Serra K; Joyner TA; Humphries A
    PeerJ; 2015; 3():e1317. PubMed ID: 26500825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.
    Scyphers SB; Powers SP; Heck KL; Byron D
    PLoS One; 2011; 6(8):e22396. PubMed ID: 21850223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill.
    Silliman BR; van de Koppel J; McCoy MW; Diller J; Kasozi GN; Earl K; Adams PN; Zimmerman AR
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11234-9. PubMed ID: 22733752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services.
    Liu Z; Fagherazzi S; He Q; Gourgue O; Bai J; Liu X; Miao C; Hu Z; Cui B
    Nat Commun; 2024 Apr; 15(1):3643. PubMed ID: 38684646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.
    Zengel S; Bernik BM; Rutherford N; Nixon Z; Michel J
    PLoS One; 2015; 10(7):e0132324. PubMed ID: 26200349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm.
    Silliman BR; He Q; Angelini C; Smith CS; Kirwan ML; Daleo P; Renzi JJ; Butler J; Osborne TZ; Nifong JC; van de Koppel J
    Curr Biol; 2019 Jun; 29(11):1800-1806.e3. PubMed ID: 31130456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.